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Abstract

We consider the problem of learning model structure. We assume that
data is generated by one or more trace norm distributions [3]. We find
that, as with other unsupervised problems, there are a number of equally-
corrrect solutions. Which solution is best depends on the interpretation
of distances in the data space.

1 Trace Norm Distribution

Let X ∈ R
n×m. The trace norm distribution is defined as

Pn×m
λ (X) =

1

Zn×m
λ

exp(−λ‖X‖Σ), (1)

where the superscript is not exponentiation, but rather a designation that the
distribution is specific to the matrix size. ‖X‖Σ is the trace norm of X (the
sum of singular values of X), and

Zn×m
λ =

∫

exp(−λ‖X‖Σ)dX (2)

is the normalization constant, where the integral is over all matrices of size n×m.
See [1] and [2] for discussion of computation of the normalization constant.

2 An Example

Consider real data generated in the form of a 2 × 2 matrix, X ∈ R
2×2. Let Xi

designate the ith row of X . We consider two models: (1) the entire matrix is
generated via a trace norm distribution, X ∼ P 2×2, and (2) each row is gen-
erated independently via a trace norm distribution, X ∼ P 1×2(X1)P

1×2(X2).
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Given data X ∈ R
2×2, we find the model most likely to have generated the

data. This is simply a matter of determining which model yields higher data
likelihood.

First, we consider case #1. Here, the likelihood of the data is

P 2×2(X) =
exp(−λ‖X‖Σ)

Z2×2
=

exp(−λ‖X‖Σ)
1
λ4

1
4

(

3
2

)2
Vol(V2,2)2

, (3)

where Vol(V2,2) = 2π
Γ(1)

2π1/2

Γ(1/2) = 4π is the volume of the 2 × 2 Stiefel manifold

[4]. Next, we consider case #2. Here, the likelihood is

P 1×2(X1)P
1×2(X2) =

exp(−λ‖X1‖Σ − λ‖X2‖Σ)
(

1
λ2

1
2Vol(V2,1)Vol(V1,1)

)2 , (4)

where Vol(V2,1) = 2π
Γ(1) = 2π and Vol(V1,1) = 2π1/2

Γ(1/2) = 2. Note that ‖X‖Σ ≤

‖X1‖Σ + ‖X2‖Σ and Z2×2 = 9π2 ≥ 4π2 =
(

Z1×2
)2

. Model #1 will be preferred
if

P 2×2(X)

P 1×2(X1)P 1×2(X2)
=

exp(λ(‖X1‖Σ + ‖X2‖Σ − ‖X‖Σ))

9/4
> 1. (5)

Equivalently, model #1 will be preferred if the difference in singular values is
larger than a linear function of 1

λ ,

‖X1‖Σ + ‖X2‖Σ − ‖X‖Σ >
log 9/4

λ
. (6)

3 Discussion

The critical value of λ—the value at which neither model is preferred—is highly
sensitive to a number of factors, including the scale of the data. But, absent
information pertaining to the interpretation of distances in the data space, the
critical value is unimportant. Given a set of models, what is important is the
set of models that are preferred for some value of λ. In our framework, each
partitioning of the data into two sets corresponds to a different model. Most
partitionings will never be preferred, no matter what the value of λ. Such
partitionings provide a poor fit to the data. This issue is much like that of
selecting a width for kernel density estimation. The key question is: how far
apart can two data items be yet still be considered similar? A large value of
λ is like a large kernel width—all data items look similar and look like they
all belong to the same cluster/partition. A small value of λ is like a small
kernel width—all data items look different and look like they belong in their
own cluster/partition. Sliding λ between 0 and ∞, we find a set of models which
are each optimal for a particular interpretation of distance in the data space.
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