Trace Norm is Less than the Sum of Column (or Row) Lengths

Jason D. M. Rennie jrennie@gmail.com

March 11, 2006

The trace norm, $||X||_{\Sigma}$, of a matrix is the sum of its singular values. It can also be defined as the dual to the spectral norm [1],

$$\|X\|_{\Sigma} = \max_{Y:\|Y\| \le 1} \operatorname{tr}(Y^T X), \tag{1}$$

where ||Y|| is the spectral norm (maximum singular value) and tr(·) denotes the trace. Note that the maximum can always be achieved by a matrix Y with orthonormal rows or columns. Since tr($Y^T X$) = tr($X^T Y$), it must be that the trace of a matrix is less than or equal to its column or row lengths,

$$\|X^{T}\|_{\Sigma} = \|X\|_{\Sigma} \le \sum_{i} \sqrt{\sum_{j} X_{ij}^{2}}.$$
 (2)

Using this result, we can use the singular value decomposition of a matrix to bound the contribution to the trace norm of a matrix update. Let $X \in \mathbb{R}^{m \times n}$ be a matrix with singular value decomposition $X = U\Sigma V^T$. Let $x \in \mathbb{R}^{1 \times n}$ be a row vector. Let $\bar{X} = \begin{bmatrix} X \\ x \end{bmatrix}$ be the updated matrix. Note that we can choose \bar{U} with unit columns and diagonal matrix $\bar{\Sigma}$ so that $\bar{X}V = \bar{U}\bar{\Sigma}$. Since the trace norm is unitarily invariant, $\|\bar{X}\|_{\Sigma} = \|\bar{U}\bar{\Sigma}\|_{\Sigma}$. Applying the above result, we have that the trace norm of the updated matrix is less than the trace of $\bar{\Sigma}$,

$$\|\bar{X}\|_{\Sigma} \le \sum_{i} \bar{\Sigma}_{ii}.$$
(3)

References

[1] J. D. M. Rennie. The relation between the spectral and trace norms. http://people.csail.mit.edu/jrennie/writing, March 2006.