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Abstract

Continuing our discussion from [3], we discuss how to obtain the nor-
malization constant for our trace norm distribution.

Consider the task of modeling a set of documents using the framework es-
tablished in [3]. We treat each document as having its own multinomial dis-
tribution. Let θi be the multinomial natural parameter vector for document i.
The data likelihood is the usual multinomial likelihood, where we assume that
the likelihood of a set of documents is simply the product of their individual
likelihoods. We use the trace norm distribution to impose a prior on the pa-
rameters. Construct a matrix Θ = [θ1θ2 . . . θn]T , where the multinomial natural
parameter vectors serve as the rows. The trace norm distribution on the set of
parameter vectors is

− log P (Θ|λ) = λ‖Θ‖tr + log Zλ, (1)

where ‖·‖tr designates the trace norm, or the sum of singular values in a matrix.
The single parameter, λ, allows for scaling of the distribution. Let σ1, . . . , σm

be the singular values of Θ. Then,

‖Θ‖tr =
∑

i

σi (2)

The normalization constant for this distribution is an integral over matrices Θ.
Since we are using natural parameters, values can vary anywhere along the real
number line, so the integral is over R

n×m. n is the number of rows/documents;
m is the number of columns/features. We assume n > m for this discussion,
but this assumption is not essential for our analysis.

In comparing different hierarchical models, it is essential that we be able to
normalize the distribution. The normalization constant is

Zλ =

∫

Rn×m

exp (−‖Θ‖tr) dΘ. (3)

∗Updated January 23, 2006. Many thanks to John Barnett for helping me understand

Edelman’s notes and for suggesting helpful directions in this derivation.

1



But, Θ is an awkward representation for integrating over singular values. In
§2.7 of [1], Edelman provides the Jacobian of the singular value decomposition,
Θ = UΣV T ,

∏

i<j≤m

(σ2
i − σ2

j )
m
∏

i=1

σn−m
i (dΣ)∧(HT dU)∧(V T dV )∧, (4)

where H is an orthogonal n × n matrix with first m columns identical to U .
Assumed is that the singular values are ordered and unique, σ1 > σ2 > · · · >
σn. Even when the singular values are unique, the SVD is not. The sign of
columns of U and V may be switched without modifying UΣV T . So, we must
divide the integral involving the SVD Jacobian by 2m. After changing variables,
Θ = UΣV T , our integral becomes,

Zλ =
1

2m

∫

exp

(

−λ

m
∑

i=1

σi

)

∏

i<j≤m

(σ2
i − σ2

j )

m
∏

i=1

σn−m
i (dΣ)∧(HT dU)∧(V T dV )∧,

(5)

where H ∈ R
n×n is orthogonal with first m columns identical to U . Note that

this calculation can be made as the product of three separate integrals. Note
that

∫

(HT dU)∧ is integration over the Stiefel manifold;
∫

(V T dV )∧ integrates
over a special case of the Stiefel manifold (square matrices), otherwise known as
the orthogonal group. In §5 of [2], Edelman provides the volume of the Stiefel
manifold, Q ∈ R

n×m s.t. QT Q = Im, denoted Vm,n,

Vol(Vm,n) =
2mπmn/2

Γm(n/2)
, (6)

where Γm(a) = πm(m−1)/4
∏m

i=1 Γ[a−(i−1)/2]. Note that Vol(Vm,n) =
∏n

i=m+1 Ai,
where Ai is the surface of the i-sphere of radius 1. Remaining is the integral
over singular values,

∫

exp

(

−
m
∑

i=1

σi

)

∏

i<j≤m

(σ2
i − σ2

j )
m
∏

i=1

σn−m
i (dΣ)∧ (7)

Note that the singular values were assumed to be ordered, so the limits of
integration are not independent of the variables. More explicity, the singular
value integral is written as

∫ ∞

0

∫ σ1

0

· · ·

∫ σm−1

0

∏

i<j≤m

(σ2
i − σ2

j )

m
∏

i=1

e−σiσn−m
i dσm · · · dσ1 (8)

Note that integrals of the form
∫ a

0
e−xxbdx are (lower) incomplete gamma func-

tions. Hence, we can write this integral as a sum of incomplete gamma functions.
Note that the innermost integral can be written as

∫ σm−1

0

e−σiσn−m
m

m−1
∏

i=1

(σ2
i − σ2

m)dσm (9)
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Expanding the product, we arrive at a polynomial function of σm,

m−1
∏

i=1

(σ2
i − σ2

m) =

m−1
∏

i=1

σ2
i − σ2

m

m−1
∑

i=1

∏

j 6=i

σ2
j + · · · − σ2(m−2)

m

m−1
∑

i=1

σ2
i + σ2(m−1)

m ,

(10)

where the signs of the later terms assume that m is odd. Integrating, we get
a sum of lower incomplete gamma functions. Note that the lower incomplete
gamma function [4] is defined as

γ(a, x) =

∫ x

0

ta−1e−tdt. (11)

So, we have

∫ σm−1

0

e−σiσn−m
m

m−1
∏

i=1

(σ2
i − σ2

m)dσm =

γ(n − m, σm−1)

m−1
∏

i=1

σ2
i − γ(n − m + 2, σm−1)

m−1
∑

i=1

∏

j 6=i

σ2
j + · · ·

− γ(n − m + 2(m − 2), σm−1)

m−1
∑

i=1

σ2
i + γ(n − m + 2(m − 1), σm−1). (12)

Note that since a is always a positive integer, we can easily evaluate the lower
incomplete gamma function. γ(1, x) = 1− e−x. A simple recursion gives us the
values for other positive integers (a ≥ 2):

γ(a, x) = −xa−1e−x + (a − 1)γ(a − 1, x). (13)

Expanding the recursion, we get

γ(a, x) = (a − 1)! −

a
∑

i=1

(a − 1)!

(i − 1)!
xi−1e−x, (14)

where 0! ≡ 1. For the proof, substitute (14) for γ(a − 1, x) in (13). We can
substitute this definition of the lower incomplete gamma function into (12) to
obtain a form that is easy to integrate. Continuing in this manner, we can
evaluate the full integral. Computational techniques are likely necessary for
non-trivial values of m.
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