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Abstract

The Trace Norm Distribution is a distribution over matrices such that

the negative log-likelihood is proportional to the trace norm of the matrix.

The partition function of this distribution is intractible to compute exactly

for large matrices, so we must use approximation techniques. We discuss

sampling and bounding techniques that can be used to approximate the

partition function.

1 Introduction

The trace norm distribution of a matrix, X ∈ R
n×m (we assume n > m) is

defined as

Pλ(X) =
1

Zλ
exp(−λ‖X‖tr), (1)

where ‖X‖tr is the trace norm of X , the sum of (non-negative) singular val-
ues. Zλ is the partition function of the distribution, which is the integral of
exp(−λ‖X‖tr) over all matrices X ∈ R

n×m,

Zλ =

∫

Rn×m

exp(−λ‖X‖tr)dX. (2)

Clearly X is an awkward representation for calculating the sum of singular
values of a matrix. So, we change variables to a singular-value decomposition
(SVD) factorization, X = UΣV T . Note that doing this does not change the
number of free parameters, since U has orthonormal columns, V is orthogonal
and Σ is diagonal. The diagonal elements of Σ are the singular values and
are ordered from largest to smallest. Edelman gives the Jacobian for the SVD
change of variables [1]. Note that applying a sign change to corresponding
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columns of U and V does not change X , so we must divide by 2m. Our integral
becomes

Zλ =
1

2m

∫

exp

(

−λ
m
∑

i=1

σi

)

∏

i<j

(σ2
i − σ2

j )
m
∏

i=1

σn−m
i dΣ∧(HT dU)∧(V T dV )∧,

(3)

where H ∈ R
n×n is an orthogonal matrix with first m columns identical to U .

This integral separates nicely into three parts, one for each part of the decom-
position.

∫

(HT dU)∧ and
∫

(V T dV )∧ are integrals over the Stiefel manifold and
orthogonal group, respectively. Edelman gives the formula for these volume
calculations [2]. What remains is integration over the singular values,

∫ ∞

0

∫ σ2

0

· · ·

∫ σm−1

0

exp

(

−λ

m
∑

i=1

σi

)

∏

i<j

(σ2
i − σ2

j )

m
∏

i=1

σn−m
i dσm . . . dσ2dσ1 (4)

Note that
∏

i<j(σ
2
i −σ2

j ) expands to a polynomial with more than 2m−1 terms, so
the integral is intractible for large m. We must turn to approximation techniques
for large matrices. We describe these in the next two sections.

2 Approximation via Sampling

We would like to calculate

Zλ =

∫

Rn×m

exp(−λ‖X‖tr)dX. (5)

But, this is intractible for large n, m. However, a technique know as importance
sampling [3] allows us to estimate this quantity. Let f(X) = exp(−λ‖X‖tr).
Let g(X) be a probability distribution over R

n×m from which we can sample.
Clearly, Zλ =

∫

f(X)g(X)/g(X)dX . Let {X1, X2, . . . , Xn} be samples from g.
Then,

Zλ ≈
1

n

n
∑

i=1

f(Xi)

g(Xi)
. (6)

Clearly, the approximation is best when g ∝ f . However, if we knew such a g,
sampling would not be necessary. The distribution g should be easy to compute,
but should be approximately proportional to f . In our case, a reasonable choice
for g is the distribution where each column of X has a negative log-probability
equal to its Euclidean distance from the origin,

g(X) ∝

m
∏

j=1

e−λ‖Xj‖, (7)
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where Xi is the ith column of X . The partition function for g is not completely
trivial, so we provide its calculation.

∫

e−λ‖~x‖d~x =

∫ ∞

0

e−λrdr

∫

(Hdq)∧ =
2πn/2

λΓ(n
2 )

, (8)

where H is the householder reflector and ~q is the spherical parameter vector as
discussed in [2].

∫

(Hdq)∧ calculates the surface area of the n-sphere. Hence,

g(X) =
(

λΓ( n
2
)

2πn/2

)m
∏m

j=1 e−λ‖Xj‖. g is not difficult to sample from. Sample a

radius r from a two-sided exponential. Sample an n-vector, ~x, from a standard
Normal. Scale ~x to length r to yield a sample from g.

3 Approximation via Bounding

Another approach to approximating Zλ is to bound the integral with easy-to-
compute quantities. We can easily construct an upper bound to the integral by
noting the following inequalities,

∏

i<j

(σ2
i − σ2

j ) ≤

m
∏

i=1

σ
2(m−i)
i , and

∫ x

0

f(t)e−tdt ≤

∫ ∞

0

f(t)e−tdt, (9)

where f(t) ≥ 0 ∀t and we assume that the singular values are positive and
ordered (σ1 ≥ σ2 ≥ · · · ≥ σm). Applying these two inequalities to (4) gives us
an upper bound on the integral,

∫ ∞

0

· · ·

∫ ∞

0

m
∏

i=1

e−λσiσn+m−2i
i dσm . . . dσ1 =

m
∏

i=1

Γ(n + m − 2i)

λn+m−2i
. (10)

The term on the right is easy to compute since all Gamma arguments are positive
integers.

Another upper bound can be derived from the sampling distribution we used
above. Note that

e−λ‖X‖tr ≤
m
∏

j=1

e−λ‖Xj‖, (11)

where Xj is the jth column of X . Hence,

Zλ ≤

(

λΓ(n
2 )

2πn/2

)m

. (12)
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