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Abstract

A “topic” is a notion that is commonly used in work on text classifi-
cation and information retrieval. A topic defines the rate at which words
from the vocabulary are expected to occur. A document can be defined in
terms of its topics so that the rate of occurrence in the document is (ap-
proximately) equal to a convex combination of its “topics.” In this work,
we define two characteristics of a topic that allow better understanding
of the nature of a topic. We then describe a new text dimensionality
reduction technique that makes use of these new characterizations.

1 Introduction

Given a vocabulary of words indexed {1,2,...,n}, we define a topic as a dis-
tribution over those words. I.e. a topic is a non-negative, real-valued vector,
fi, pt; > 0 Vi, the elements of which sum to one, > . p; = 1. A topic specifies
a rate of occurrence for each of the words in the vocabulary. Every non-empty
document has a representation as a topic.

One methodology for a reduced dimensionality representation of a collection
of documents is to find a set of topics (fewer than the number of documents) such
that each document’s topic representation is “close” to a convex combination
of the chosen set of topics. This technique limits the number of topics that are
allowed to represent the document collection.

2 Characterizing a Topic

Here, we define some ways to characterize a topic. A goal of these definitions
is to give us the ability to characterize the strength of a set of topics, not just
their number. First, we introduce an alternate parameterization of a topic.
The non-negative, sum-to-one topic parameterization (fI) we have introduced
is known as the mean parameterization because the mean frequency of word 4
in any document generated from the topic is p is proportional to p;. This



representation provides good intuition, but due to the non-negativity and sum-
to-one constraints, it is a somewhat unnatural representation with which to
work.

All exponential family models have what is known as a natural parameter-
ization in which the log-likelihood is a linear function of the data. We discuss
this in §2 of [2]. In the case of a topic, which is the mean parameterization of
a multinomial or unigram, there is a family of natural parameter vectors for
each mean parameter vector. The degree of freedom is due to the sum-to-one
constraint in the mean parameterization. Given a mean parameter vector, [,
a corresponding natural parameter vector is g such that 6; = log pi; + c. The
translation back to mean parameters is p; = % =exp(f; — ¢).

For the purposes of characterizing a topic, we choose the natural parameter-
ization with smallest Euclidean norm. It is easy to show that this corresponds
to a choice of ¢ = —% >;logpi. In other words, we choose the corresponding
natural parameter vector so that the parameter values sum to zero. Note that
the uniform topic (p; = 1/n Vi) translates to a vector of all zeros in the natural
parameter space. Furthermore, we can think of this as a natural embedding of
a topic as a vector in Euclidean space. Thus, we can speak of a topic’s length
and direction. We define the length of a topic (i to be
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Let f(fi) =logfi — 1 >, logu; (where log is applied element-wise to /i) be the
embedding of the topic ji. Then, length(ji) is simply || f(i)||2 (the Lz norm of
f(@)). Similarly, we define the direction of a topic [i to be
o f (i)
direction(z) Tongth(f (7)) (2)
In other words, the direction of a topic is simply its Euclidean projection scaled
to unit length.

These definitions suggest an alternate methodology for finding a reduced
representation of a collection of documents. Instead of limiting the number
of topics, we limit the sum of lengths of the topics. Then, a document is a
linear combination of topics where the vector of linear weights form a unit-
length vector. In other words, the goal is to find orthogonal matrices U and V'
and a diagonal matrix S so that USV”T approximates well natural parameter
topic representations of the documents (one document per row). V is the topic
matrix; each column corresponds to a topic direction. S is the length matrix,
giving the lengths of each of the topics. U specifies the unit-length weights used
to combine the topics.

What we have just described is, in fact, a trace norm constraint (see [1] for
discussion). The topic lengths correspond to singular values. USV7 is a matrix
of multinomial (natural) parameters where each row corresponds to a single
document in the collection. I.e. each row of this matrix can be thought of as an



approximation to the natural parameter representation of the document topics.
An advantage of using the trace norm as a constraint as opposed to simply
limiting the number of topics is that it provides a continuum of constraints
instead of a discrete set of constraints.

3 The Topic Length Model

Here we describe an instantiation of a topic model that makes use of a “sum of
topic lengths” or trace norm constraint. We would like to find natural param-
eter topic representations of our documents that are somehow “close” to the
true documents. We do this by treating each document as having been gener-
ated by a multinomial; we minimize negative log-likelihood. Instead of finding
the best fit parameter matrix for various trace norm constraints, we minimize
a weighted sum of trace norm and negative log-likelihood of the data. This
allows us to explore the same set of solutions that we would have found had
we explicitly imposed the trace norm constraint. Let Y be the matrix of term
frequencies corresponding to our document collection, one row per document.
Our minimization objective is

II}%DA||X||tr+ZXij}/vija (3)
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where X is the matrix of multinomial natural parameters that we learn, each
row corresponding to a single document.
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