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Abstract

A “topic” is a notion that is commonly used in work on text classifi-
cation and information retrieval. A topic defines the rate at which words
from the vocabulary are expected to occur. A document can be defined in
terms of its topics so that the rate of occurrence in the document is (ap-
proximately) equal to a convex combination of its “topics.” In this work,
we define two characteristics of a topic that allow better understanding
of the nature of a topic. We then describe a new text dimensionality
reduction technique that makes use of these new characterizations.

1 Introduction

Given a vocabulary of words indexed {1, 2, . . . , n}, we define a topic as a dis-
tribution over those words. I.e. a topic is a non-negative, real-valued vector,
~µ, µi ≥ 0 ∀i, the elements of which sum to one,

∑

i µi = 1. A topic specifies
a rate of occurrence for each of the words in the vocabulary. Every non-empty
document has a representation as a topic.

One methodology for a reduced dimensionality representation of a collection
of documents is to find a set of topics (fewer than the number of documents) such
that each document’s topic representation is “close” to a convex combination
of the chosen set of topics. This technique limits the number of topics that are
allowed to represent the document collection.

2 Characterizing a Topic

Here, we define some ways to characterize a topic. A goal of these definitions
is to give us the ability to characterize the strength of a set of topics, not just
their number. First, we introduce an alternate parameterization of a topic.

The non-negative, sum-to-one topic parameterization (~µ) we have introduced
is known as the mean parameterization because the mean frequency of word i
in any document generated from the topic is p is proportional to µi. This
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representation provides good intuition, but due to the non-negativity and sum-
to-one constraints, it is a somewhat unnatural representation with which to
work.

All exponential family models have what is known as a natural parameter-
ization in which the log-likelihood is a linear function of the data. We discuss
this in §2 of [2]. In the case of a topic, which is the mean parameterization of
a multinomial or unigram, there is a family of natural parameter vectors for
each mean parameter vector. The degree of freedom is due to the sum-to-one
constraint in the mean parameterization. Given a mean parameter vector, ~µ,
a corresponding natural parameter vector is ~θ such that θi = log µi + c. The

translation back to mean parameters is µi = exp(θi)
P

i
exp(θi)

= exp(θi − c).

For the purposes of characterizing a topic, we choose the natural parameter-
ization with smallest Euclidean norm. It is easy to show that this corresponds
to a choice of c = − 1

n

∑

i log µi. In other words, we choose the corresponding
natural parameter vector so that the parameter values sum to zero. Note that
the uniform topic (µi = 1/n ∀i) translates to a vector of all zeros in the natural
parameter space. Furthermore, we can think of this as a natural embedding of
a topic as a vector in Euclidean space. Thus, we can speak of a topic’s length

and direction. We define the length of a topic ~µ to be

length(~µ) =

√

√

√

√

∑

i

(

log µi −
1

n

∑

i′

log µi′

)2

(1)

Let f(~µ) = log ~µ − 1
n

∑

i log µi (where log is applied element-wise to ~µ) be the
embedding of the topic ~µ. Then, length(~µ) is simply ‖f(~µ)‖2 (the L2 norm of
f(~µ)). Similarly, we define the direction of a topic ~µ to be

direction(~µ) =
f(~µ)

length(f(~µ))
. (2)

In other words, the direction of a topic is simply its Euclidean projection scaled
to unit length.

These definitions suggest an alternate methodology for finding a reduced
representation of a collection of documents. Instead of limiting the number
of topics, we limit the sum of lengths of the topics. Then, a document is a
linear combination of topics where the vector of linear weights form a unit-
length vector. In other words, the goal is to find orthogonal matrices U and V
and a diagonal matrix S so that USV T approximates well natural parameter
topic representations of the documents (one document per row). V is the topic
matrix; each column corresponds to a topic direction. S is the length matrix,
giving the lengths of each of the topics. U specifies the unit-length weights used
to combine the topics.

What we have just described is, in fact, a trace norm constraint (see [1] for
discussion). The topic lengths correspond to singular values. USV T is a matrix
of multinomial (natural) parameters where each row corresponds to a single
document in the collection. I.e. each row of this matrix can be thought of as an
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approximation to the natural parameter representation of the document topics.
An advantage of using the trace norm as a constraint as opposed to simply
limiting the number of topics is that it provides a continuum of constraints
instead of a discrete set of constraints.

3 The Topic Length Model

Here we describe an instantiation of a topic model that makes use of a “sum of
topic lengths” or trace norm constraint. We would like to find natural param-
eter topic representations of our documents that are somehow “close” to the
true documents. We do this by treating each document as having been gener-
ated by a multinomial; we minimize negative log-likelihood. Instead of finding
the best fit parameter matrix for various trace norm constraints, we minimize
a weighted sum of trace norm and negative log-likelihood of the data. This
allows us to explore the same set of solutions that we would have found had
we explicitly imposed the trace norm constraint. Let Y be the matrix of term
frequencies corresponding to our document collection, one row per document.
Our minimization objective is

min
X

λ‖X‖tr +
∑

ij

XijYij , (3)

where X is the matrix of multinomial natural parameters that we learn, each
row corresponding to a single document.
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