Boosting with decision stumps and binary features

Jason Rennie
jrennie@ai.mit.edu

April 10, 2003

1 Introduction

A special case of boosting is when features are binary and the base learner is
a decision stump (which assigns examples a label based on a single feature).
Text classification problems tend to have the property that the presence of a
feature is more useful than its absence. But, in this special case, an algorithm
like AdaBoost will assign equal magnitude weights to both positive and
negative occurrences. This will make the path to convergence less direct
and may cause AdaBoost to select features poorly. The alternative is to
use a base learner that can abstain. But, then we lose the ability to easily
weight nonoccurrences. Solutions include allowing the base learner to weight
occurrences and non-occurrences separately and adjusting the bias term to
compensate. We discuss such algorithms, pointing out their advantages and
disadvantages.

2 Adaboost

In this section, we give the derivation of AdaBoost for the case of binary
features and a decision stump base learner. Let (x1,...,z,,) be the set of
training examples, x; € X. Let (y1,...,ym) be their labels, y; € {—1,+1}.
Let x;; = +1 if feature j is present in example ¢, x;; = —1 otherwise. Assume
that the classifier learned by AdaBoost up to round n is

d
f(x) :w0+2wjxj7 (1)
j=1

where d is the number of features and z; is the feature value € {—1,+1} for
the test example x. We want to modify the weight on one of the features so

as to maximally decrease the loss functional,

n

L(f) = Zefyif(mi)' (2)

i=1

If we modify the weight of the k' feature, the loss becomes

n
Li(f) = Z e*yif(mi)*yiéxikj (3)

i=1
where 9§ is the amount we add to wy. Minimizing with respect to ¢ gives us

oLy, s) —s S
g 2 =0 @
— Z e~ Vif(@i) — =0 Z e~ vif(xi) (5)
1Y Tip=—1 1Y Tip=1

]' oy — e_yif(aci)
< 6= —log Zl-yzmzkfl
2 Zi:yixikZ—l e_yif(afz’)

Let W+ = Zi:yixikzl e Vif (@) Let W~ = Zi:ymik:_l e ¥if(#i) Then, the
feature that maximally reduces the loss is defined by the feature, k, that
maximizes

L(f) — Li(f) = Z e~ Yif(zi) _ Z e~ Yif (xi)—yidwiy (7)

% 7

=(1—e9 Z e vl (@) 4 (1 — &) Z e~ vif (i)

Y Ti=1 yiTip=—1
(8)

= (VT —vi)”. (9)

(6)

Equivalently, the feature that maximally reduces the loss is the one that

maximizes ‘\/W — VW ’

3 ZeroOneBoost

In the special case that we have described, AdaBoost has the undesirable
property that a non-occurrence of a feature contributes the same magnitude
score as does an occurrence. We consider a slight variant of AdaBoost

wherein the decision stump returns +1 if the chosen feature occurs and 0 if
it does not. We use the same notation as before, except that now xz;; = 0 if
feature j is not present in example i.

Again, for each feature, we want to choose § to minimize the loss. We
result in the same formula for ¢,

1 w+
= ~log —. 1
§ =5 log o (10)
But, it is subtly different than before. Whereas before the two sets, {i :
yirik = 1} and {i : y;z;, = —1}, enumerated all possible values of i, they

now only enumerate those for which feature k appears (z;x = 1). We must
now pay attention to the fact that W or W~ can easily be zero. Smoothing
is used to avoid taking log of zero or infinity. We compute 4 as

1 Wt +e

0 =—-log ———
2 OgW‘—i—e’

(11)
where € is some small constant.
To determine the feature that maximally reduces the loss, we compute,

L(f) = L (f)- (12)

Again, the result is idential to what we found before, with the subtle differ-
ence that the two sets of examples that W and W™~ deal with do not cover
the entire set of examples.

4 Bias Correction

In both of the above-described algorithms, weights are chosen for the fea-
tures, but in the first case weights are the same for occurences & non-
occurrences and in the second case, a weight of zero is always used for non-
occurrences. Usually, improvements can be made by adding a bias value.

Consider AdaBoost where we have just chosen a feature, k, and weight,
0. Now we wish to choose a bias, 7, so as to minimize the loss functional.
The loss is

L(f) = Ze—yif(ri)—yn' (13)

Solving for the minimum, we get
oL N (@)
gy =~ 2w T =0 (14)
i=1
Zi:yizl e~ vif(z:)
Z’i:yi:fl e_yif(xi) ’

or, using definitons we defined earlier, v = %log &V/—f This is the same
whether we are using —1/+1 features or 0/+1 features and we do not need
to smooth.

1
<:>*y:§log

(15)

5 Separate occurrence and non-occurrence weights

Schapire and Singer discuss learning weights for the occurrence and non-
occurrence of features separately [1]. This is similar to selecting a bias.
But, whereas we have described a process of first selecting a weight and
then choosing a bias, here the weights are chosen simultaneously, albeit in
separate optimizations (the weights are not chosen to joinly minimize the
loss functional).

Let x;, € {0,+1}. We conduct two separate minimizations. In the first,
we choose d1, the weight for the feature’s occurrence. Then, we choose
0~ , the weight for the features’s non-occurrence. The formulas are identical
to those already described in section 2. For §%, we use 0/+1 features, so
smoothing is required. For §~, we use +1/0 features. That is, z;; = 0 when
feature j occurs, z;; = +1 when it does not. Each of the two weights will
yield a separate reduction in the loss function. We choose the feature whose
sum of the two loss reductions is largest.

6 NewtonBoost

None of the above algorithms finds the weight and bias term that minimizes
the loss functional. The closest are the algorithms that first choose a weight,
then do bias correction. An algorithm that is uniformly better than the one
Schapire and Singer describe is one that picks a weight for occurrence or
non-occurrence (depending on which gives lower loss) and then does bias
correction. Equivalently, one could choose one weight and then choose the
second weight in the context of the first.

In this section, we explore the idea of jointly optimizing the occurrence
and non-occurrence weights, or jointly optimizing the weight and the bias

term. For each feature, k, consider selecting a weight, d, and bias, 7v. The
new loss is

Li(f) = Z e—yif(wi)e—yi5xik—yw’ (16)
=1

Minimizing for v and 4, we get

OLy, —Yif (i) o —Yi0Tik ,—YiY
—_— T — . 1 7 7 7 7 — 0 17
By ;yle e e (17)
1 Zi:yizl e~ Vif (@i) g—vidTik
== 2 log Zi:y':—l e~ Vif (i) e—yibmip (18)
oL N
Tif-::_'jg:yﬂmke vif (#) g —vidrine—viY = (19)
1 o evif@) vy
< 6 = — log E’L-yzivzk—l -~ f(x) — (20)
2 Zi:yixik:—le Yi i)e~YiY
Now, assume that x;; € {0,+1}. Then
1, Wt
0=—7+ zlog —. 21
v+ 5 log (21)

Now define BT = >, e vif@) pB= = D=1 e ¥/(#) Recall that
W =3 =1 e ¥l @) and W— =
to

iyiw iyimi=—1 e Vil (@) We simplify

1, Bt+(e®-1)Wt
v = 5log —= 3 -
2 ° B+ (e =)W

(22)

Define N* =3, | . e~ ¥if (@) - Substi-

tuting for J, we get

e ¥ifl@) Nt =3

i:y;=—1,2;,=0

1 N+ 2 +W—
v = Liog + (VW) (23)
2 TN+ (e WWHW)

We cannot solve for « directly. Instead, we use Newton’s method. Let
y = f(7), where
1 Nt + VAW -

=y—<lo . 24
fo) =n =3l e (24)

1 eEVWHTW— e IVWTW =

!/
= + 25
fo=1-3 <N++ev\/W N~ te W+W> %)
Newton’s method calculates the n + 15¢ approximation to v as

Al = Y — f(m) .
T o)

We have not been able to show that Newton’s method will converge. It can
be shown that f” has one inflection point and that if we add € to N* and
N7, then f'(y) > 4. Visual inspection of example plots (see figure 1) over
a normal range of values show cases that will converge.

(26)

f(Gammay
f(Gammay

8 8
6 F E & 7
4 L 4
4 L 4
~ ~ 2 b
T et iz
: Soof 1
c et 1 ¢
“« “ -2 L 4
2+ B 4L il
-4 L B 6 L 4
-6 I I I _g I I I
-1@ -5 4] 5 10 -1@ -5 4] S 10
Gamma Gamma

Figure 1: Example plots of f(7).

We can solve for the bias term, ~, via Newton’s method, then calculate
the weight, &, as function of v. We make this calculation for each feature
and choose the one that yields the largest decrease in the loss functional,

L(f) — Lp(f) = Ze—yif(wi)(l — e YTk g UiT) (27)
i=1

This proceedure has an advantage over others described in this paper. It op-
timizes the weight and bias term jointly. Thus, a feature is chosen based on
the real decrease in the loss functional that it can provide. The other tech-
niques use an approximation of the loss delta. However, it is not clear that
this provides significant improvement over other techniques. Schapire and
Singer noted that learning separate occurrence and non-occurrence weights
yielded little improvement over learning only occurrence weights. This tech-
nique may give little additional improvement.

References

[1] Robert E. Schapire and Yoram Singer. Boostexter: A boosting-based
system for text categorization. Machine Learning, 39:135-168, 2000.

