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Abstract

Rifkin describes how Regularized Least Squares Classifiers can be
learned efficiently via the Conjugate Gradients algorithm [1]. We extend
his framework to incorporate the notion of the regularization term being
a prior on the weight vector. This allows us to incorporate any prior in-
formation we have about weights for individual features. Transfer is one
scenario where this may be of use.

Rifkin [1] states the Regularized Least Squares Classification problem as

min
f∈H

1
2n

n∑
i=1

(yi − f(xi))2 + λ‖f‖2K . (1)

Using the representer theorem, he shows that this is equivalent to

min
c∈Rn

1
2n

(y −Kc)T (y −Kc) + λcTKc, (2)

where Kij = K(xi, xj) and K is the kernel function.
We consider classification as an encoding problem. We encode the model

and the data given the model. The least squares objective,

(y −Kc)T (y −Kc) (3)

is the negative log-likelihood of y for an un-normalized Normal distribution with
mean Kc and identity covariance matrix, N(Kc, I). The regularization term,

λcTKc (4)

is the negative log-likelihood of K1/2c for a Normal distribution with zero mean
and identity covariance matrix, N(0, I). Note that K1/2c parameterizes a linear
decision boundary in the kernel space.

Our modification is to relax the constraint that the covariance matrix of the
regularization term be a scaled identity matrix. Now we consider a Normal with
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zero mean and full covariance matrix, N(0,Σ). This allows us to incorporate
prior information about the decision boundary. Let XT = K1/2. The new least
squares objective is

min
c∈Rn

1
2n

(y −XXT c)T (y −XXT c) +
1
2
cTXΣ−1XT c. (5)

For our problems, which are of high dimension, we do not forsee utilizing a
full covariance matrix, but rather a diagonal covariance matrix, where we only
specify the variance for each feature.

To solve this problem, we set the gradient to zero. The gradient is

∇Fc = − 1
n
XXT y +

1
n
XXTXXT c+XΣ−1XT c. (6)

So, we get the optimal c by solving

XXTXXT c+ nXΣ−1XT c = XXT y. (7)

Unfortunately, we cannot usefully further reduce the expression as was possible
when the covariance matrix was the identity.

One scenario where this framework is useful is transfer. The problem of
transfer is to learn to classify examples given two sources of information. The
first source is the traditional source of supervision: labeled examples drawn
from the distribution in question. The second source is labeled examples from
somewhat similar problems. Call them reference tasks. For example, if the main
task is topic classification, then the reference task examples would come from
other topic classification problems. While the words used to identify topics in
the main task may be very different from the words used to identify topics in the
reference tasks, there will be similarities in how the language is used to identify
important words.
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