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1 A Change of Parameters

To this point in our discussion of the log-log model, we have largely assumed
that the per-word parameter is the additive “constant”, b. However, the opti-
mization space for b is non-convex; solving for one bi per word creates a very
hard optimization problem—we may never be able to find the optimal setting
of the {bi}. So, we instead use a single b for all words and learn one ai for
each word. We can show that if b is fixed, solving for the {ai} is a convex
optimization problem [1].

2 Modeling Frequency Counts

Let xi be the frequency of word i in some document. Our count-based model
assigns the following probability to this event:

Pi(xi) =
(xi + b)ai

Z(ai, b)
, (1)

where Z(ai, b) =
∑∞

x=0(x + b)ai . The negative log-likelihood of a set of docu-
ments is simply the product of probabilities over all documents and words,

Jc = − log
∏
j

∏
i

Pi(xij) =
∑

j

∑
i

[log Z(ai, b)− ai log(xij + b)]. (2)

log Z is a convex function of ai per our discussion in [1]1. The second term is
linear in ai, and sums of convex functions are convex, so the entire negative
log-likelihood is convex in the {ai}.

We learn parameters via Conjugate Gradients, utilizing the objective and
gradient. Let n be the number of documents and let P̂i be the empirical fre-
quency distribution of word i. Then, the partial derivatives of the objective

1Note that for x + b ≥ 0, (x + b)ai ≡ exp(ai log(x + b)).
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are

∂Jc

∂ai
=
∑

j

[∑∞
x=0(x + b)ai log(x + b)∑∞

x=0(x + b)ai
− log(xij + b)

]
(3)

= n
(
Ex∼Pi

[log(x + b)]− Ex∼P̂i
[log(x + b)]

)
, (4)

and

∂Jc

∂b
=
∑

j

∑
i

[∑∞
x=0(x + b)ai ai

x+b∑∞
x=0(x + b)ai

− ai

xij + b

]
(5)

=
∑

i

n

(
Ex∼Pi

[
ai

x + b

]
− Ex∼P̂i

[
ai

x + b

])
. (6)

As expected, the partial derivatives are differences between empirical and model
expectations.

3 Modeling Frequency Rates

We also look at swapping the roles of the parameters in our model of frequency
rates. Our rate-based model assigns the following probability to word i occuring
with rate xi

l in a document with length l:

Pi

(xi

l

)
=

1
Z(ai, b, l)

∫ xi+1
l

xi
l

(r + b)aidr, (7)

where Z(ai, b, l) =
∫ l+1

l

0
(r + b)aidr is the normalization constant. Working out

the integrals and simplifying, we get

Pi

(xi

l

)
=

(
xi

l + b
)ai+1 −

(
xi+1

l + b
)ai+1

(b)ai+1 −
(

l+1
l + b

)ai+1 (8)

Let lj be the length of the jth document. Define fij(x) =
(

x
lj

+ b
)ai+1

. Again,
the negative log-likelihood of a set of documents is simply the product of prob-
abilities over all documents and words,

Jr = − log
∏
j

∏
i

Pi

(xij

l

)
(9)

=
∑

j

∑
i

(
log
[
fij(0)− fij(lj + 1)

]
− log

[
fij(xij)− fij(xij + 1)

])
. (10)
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Again, we learn parameters via Conjugate Gradients, utilizing the objective and
gradient. First we calculate partial derivatives for fij ,

∂fij(x)
∂ai

= fij(x) log
(

x

lj
+ b

)
(11)

∂fij(x)
∂b

= fij(x)
ai + 1
x
lj

+ b
. (12)

Then, the negative log-likelihood partial derivatives are

∂Jr

∂ai
=
∑

j

(
∂fij(0)

∂ai
− ∂fij(l+1)

∂ai

fij(0)− fij(l + 1)
−

∂fij(xij)
∂ai

− ∂fij(xij+1)
∂ai

fij(xij)− fij(xij + 1)

)
(13)

∂Jr

∂b
=
∑

j

∑
i

(
∂fij(0)

∂b − ∂fij(l+1)
∂b

fij(0)− fij(l + 1)
−

∂fij(xij)
∂b − ∂fij(xij+1)

∂b

fij(xij)− fij(xij + 1)

)
(14)
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