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1 Introduction

One interest in Biology is to determine whether or not a certain pair of proteins
will interact given the opportunity. Experiments are conducted which provide
partial information about interaction. Typically, each the result of each exper-
iment can be represented as simply a binary indicator function over (a set of)
protein pairs. A negative result indicates no interaction. A positive result may
be due to one of two things: (1) interaction between the two proteins, or (2)
“self-interaction”, where one protein is able to produce signs of interaction with-
out help from the second protein. The goal is to uncover true protein-protein
interactions (PPIs). So, positive results due to self-interaction are considered
noise.

Sontag et al. (2007) proposed a model for capturing this self-interaction
noise. They introduced a variable for each protein indicating the chance that
self-interaction will yield a positive result. This extra variable per protein al-
lowed the model to “explain-away” cases where the positive result was likely
caused by self-interaction and not a true PPI. But, this is not the only source
of noise that may lead to incorrect results. A true PPI may not lead to a level
of expression that is detected in the experiment. Or, if the experiment is overly
sensitive, the experiment may falsely indicate PPI when there is neither self-
interaction nor a true PPI. To better handle this, we propose to model how
likely a pair of proteins are to interact.

In section 2, we discuss two models of likelihood of the experimental data.
Likelihood is the way in which we determine how well our model “fits” the
experimental data. In section 3, we discuss the prior we use for the parameters
of our likelihood. The prior serves as a regularizer which encourages a compact
representation of the data in order to capture relevant aspects of the data and
and ignore noise, the idea being that relatively few factors influence the way
that proteins interact.

∗Joint work with David Sontag
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2 Likelihood

We discuss two different likelihood models for the data.

2.1 Local Normalization

For each pair of proteins, we assume that there are three possible events which
may trigger sufficient signs of interaction: (1) true PPI, (2) self-interaction
of protein #1, and (3) self-interaction of protein #2. Thus, our model of an
experiment yielding a negative result for a particular protein pair is simply a
product of the individual probabilities of non-events:

P (Yij = 0|θij , φi, φj) = θijφiφj , (1)

where θij ∈ [0, 1] is the chance that proteins i and j do not interact, φi ∈ [0, 1]
(φj ∈ [0, 1]) is the chance that protein i (j) does not self-interact.

This model has one significant drawback: local normalization. In effect, we
are assuming complete independence between the three (non-)events.

2.2 Global Normalization

We can rectify this by removing normalization from the individual variables;
for mathematical convenience, we switch to exponential parameters. Our new
unnormalized likelihood is nearly identical to the likelihood of the “local” model,

P (Yij = 0|αij , βi, βj) ∝ eαij eβieβj (2)

except that now elements of the product range along the non-negative reals:
eαij , e−βi , e−βj ∈ R+. There are only two possible outcomes (for each Yij), so
normalization of the model is trivial:

P (Yij = 0|αij , βi, βj) =
eαij+βi+βj

1 + eαij+βi+βj
. (3)

This is also known as a “logistic” or “logistic regression” model.

2.2.1 Logistic Regression

Logistic Regression is a binary classification model. Typically, there are a num-
ber of data points, represented as real-valued feature vectors, x1, . . . , xn ∈ R

d,
and corresponding binary labels, y1, . . . , yn ∈ {−1, +1}. The model learns a
weight vector, w ∈ R

d and threshold, θ ∈ R, to maximize the likelihood (or
posterior) of the data,

P (y1, . . . , yn|w, θ; x1, . . . , xn) =
∏

i

exT
i w−θ

1 + exT
i w−θ

. (4)

The threshold, θ, defines the decision boundary once points have been mapped
to R via dot-product with the weight vector, w.
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In our “global” or “logistic” model of protein interaction, the PPI parameter,
αij , corresponds to the dot-product between feature and weight vectors; the
negative sum of self-interaction variables, βi +βj , corresponds to the threshold.

Note that Logistic Regression corresponds to merely one of a number of
different loss function for binary classification (Rennie & Srebro, 2005). We
can easily substitute other loss functions to yield alternate classification models
here.

3 Prior

Though we have one parmeter for each protein pair (constituting a matrix of
parameters), it likely that relatively few factors determine the result of the
experiment(s). A common approach is to limit the rank of the matrix of pa-
rameters. However, this leads to a non-convex optimization problem with many
local minima. An alternative approach utilized by Srebro et al. (2005) is to
use the trace norm of a matrix to regularize the complexity of the parameter
matrix. Utilization of the trace norm in this way yields a convex optimizaiton
problem with a low-rank solution.

We can incorporate the trace norm into a prior on the matrix of protein pair
parameters. We achieve the effect attained by Srebro et al. (2005) by using
a prior which is proportional to the exponentiated negative trace norm of the
parameter matrix,

P (α|λ) ∝ exp(−λ‖α‖Σ), (5)

where λ controls the weighting of the prior, and ‖α‖Σ designates the trace norm
of the parameter matrix α.

Since there is little worry of overfitting with respect to the self-interaction
parameters, we assume an uninformative prior on β, P (β) ∝ 1.

4 Model

Utilizing the “global” likelihood and the trace norm prior, we achieve a joint
model,

P (Y, α, β|λ) =
∏

i,j

P (Yij |αij , βi, βj)P (α|λ)P (β). (6)

Maximization of this probability with respect to α and β corresponds to maxi-
mum a posteriori, which is a standard way of infering parameter settings. Note
that there is no need to normalize the trace norm.
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