
Using Part-of-Speech Information for Transfer in

Text Classification

Jason D. M. Rennie
jrennie@csail.mit.edu

December 17, 2003

Abstract

Consider the problem of text classification where there are very few
training examples for the target task. An idea popularized recently is to
use unsupervised examples to gain a better understanding of the example
space. This can, in turn, be used to improve classification performance
on the target task. The problem of transfer adds a new twist. It supposes
that there is available large amounts of supervised data, pertaining to a
set of “reference” tasks. The interesting case is where these reference tasks
are only loosely related to the main task, such as the tasks all being topic
classification problems. We propose to use part-of-speech as a vehicle
for transfering information from the reference tasks to the target task.
Different types of classification problems use parts-of-speech differently.
We give two algorithms. The first treats the regularization term of a
classifier as a Gaussian prior and learns a covariance matrix from the
reference data. The second treats the supervision for the reference data
as being cluster labels; spectral clustering is used to learn a kernel matrix
from the reference data. We flesh-out in full the first idea and discuss
many issues pertaining to Regularized Least Squares, the classification
algorithm we use. We present experiments that give negative results,
suggesting that the Gaussian prior idea may not inappropriate for the
part-of-speech/transfer problem.

1 Utilizing Part-of-Speech for Transfer

The idea of using unsupervised data for classification has received much atten-
tion of late (e.g. [1, 2]). However, often it is easy to obtain large quantities of
labeled, or clustered data. The difficulty is that this data may not be labeled
in a way that directly pertains to the task at hand. This is the problem that
we call transfer. The “target” task is the classification task that we would like
to solve. We posit that there exist many other classification tasks (call them
“reference” tasks) that share some similarity to the target task; we assume that
labeled data for these reference tasks is freely available. This problem of transfer
is interesting when the connection between the reference tasks and the target

1



task is loose. In this case, features that are useful for the reference task may be
useless for the target task. We propose that there may still be a way to reduce
error on the target task via transfer.

We think that different types of text classification problems use parts-of-
speech in different ways. For example, when discriminating between topics,
nouns may be the most useful part-of-speech; when classifying authors, articles
and determiners may be more important. We propose that if there is variation
in the way different parts-of-speech are used, then we can take advantage of this.
First, we consider a motivating example. In Table 1, we give the top words for
each of the categories in the 20 Newsgroups data set. We tagged all words
in the data set with their part-of-speech (POS) using Ratnaparki’s tagger and
then trained a one-versus-all Regularized Least Squares Classifier (RLSC). The
words listed had the largest weights for the corresponding binary classifier. The
table includes 55 nouns, 4 adjectives (one of which may have been mis-labeled,
“keith jj”) and one verb. 20 Newsgroups is a topic classification task. Each of
20 newsgroups represents a topic and the classifier’s job is to assign an e-mail
to the newsgroup to which it was posted. From this list of top words, it seems
that nouns are highly useful in identifying topics in documents. Of course, it
is possible that we are simply observing the distribution of different parts-of-
speech. There are more unique nouns than other part-of-speech classes. But,
if we were simply observing the distribution of unique parts-of-speech found in
the data set, we would expect to see 38 nouns, 9 verbs, 8 adjectives, 2 cardinal
numbers, 1 adverb and 2 other parts of speech1. So, there is certainly some
way in which nouns (and possibly adjectives) are in some way more useful for
20 Newsgroups than other parts of speech. The question is, how do we take
advantage of this information?

2 Regularized Least Squares Classification

Before we discuss the problem of using part-of-speech information for trans-
fer, we introduce the classification algorithm that we plan to use for this work.
Many algorithms have been used for the problem of text classification, including
Naive Bayes [3], Decision Trees [4], k-Nearest Neighbor [5], rule learning [6] and
Neural Networks [7]. However, there is a class of algorithms, here called regu-
larized linear classifiers, which have performed as well or better than all other
algorithms for the problem of text classification. Regularized linear classifiers
can be written as the sum of two terms: loss and regularization. The loss term
is a function of how well the model fits the data; the regularization term penal-
izes more complex models. Let {x1, . . . ,xn} be a set of training examples; let
{y1, . . . , yn} be their binary ({+1,−1}) labels. Let w define the decision bound-
ary. Using the squared L2-norm for regularization (as is common), a regularized

1We counted 132930 unique tokens: 84349 nouns, 19020 verbs, 18545 adjectives, 3659
cardinal numbers, 2482 adverbs and 4917 other parts of speech

2



Newsgroup 1st 2nd 3rd

alt.atheism benedikt nnp tammy nnp keith jj
comp.graphics images nns Dd jj animation nn

comp.os.ms-windows.misc windows nns windows nnp ftp.cica... nn
comp.sys.ibm.pc.hardware gateway nnp orchid nnp cmos nnp
comp.sys.mac.hardware apple nnp mac nnp powerbook nn

comp.windows.x motif nnp widget nn xterm nn
misc.forsale sell vb offers nns sale nn
rec.autos car nn cars nns driving nn

rec.motorcycles dod nnp bike nn motorcycle nn
rec.sport.baseball baseball nn phillies nns stadium nn
rec.sport.hockey hockey nn hockey nnp nhl nn

sci.crypt cryptography nn nsa nnp encryption nn
sci.electronics circuit nn voltage nn electronics nns

sci.med doctor nn disease nn symptoms nns
sci.space space nnp launch nn orbit nn

soc.religion.christian clh nn christ nnp scripture nn
talk.politics.guns guns nns gun nn firearms nns

talk.politics.mideast israeli jj armenians nnps turkish jj
talk.politics.misc deficit nn phill nnp teel nnp
talk.religion.misc koresh nnp hudson nnp decenso nnp

Table 1: For each category in the 20 Newsgroups data set, the words with
the three largest weights are listed. The underscore and suffix is not part
of the word; it indicates the word’s part-of-speech. Benedikt, Tammy and
Keith are names of common alt.atheism posters. “DoD” stands for Denziens of
Doom, the name of a motorcycle group. “clh” is the signature of the moder-
ator of the soc.religion.christian newsgroup. Phill and Teel are names of com-
mon talk.politics.misc posters. Hudson and Decenso are names of common
talk.religion.misc posters.

3



linear classifier minimizes ∑
i

L(yixT
i w) + λwT w. (1)

L(·) is the loss function. The regularization parameter, λ, weighs the importance
of the compexity penalty. The Support Vector Machine (SVM), Regularized
Least Squares Classification (RLSC) and Regularized Logistic Regression (RLR)
all use this form. For the SVM, L(z) = (1−z)+. For RLSC, L(z) = (1−z)2. For
RLR, L(z) = (1 + e−z)−1. [8] gives a discussion of these and other classifiers
that fit this form. Such classifiers have come to dominate recent empirical
evaluations of text classification algorithms [9, 10, 8, 11]. Regularized Least
Squares Classification (RLSC) [12], also known as Ridge Regression [13], has the
advantage of being especially easy to optimize since its objective is quadratic.
Results [12, 8, 11] show that RLSC performs comparably and sometimes slightly
better than other regularized linear classifiers.

2.1 Optimizing RLSC

The first step in making use of RLSC is optimizing the parameter vector that
defines the decision boundary, w. Much of the following discussion can be found
in [12]. We procede in the usual fashion, taking the gradient of the objective
and setting it equal to zero. The manipulations are simplest in matrix-vector

form. Let X =

 −x1−
...

−xn−

; let y = [y1 · · · yn]T . The rewritten objective is

J = (Xw − y)T (Xw − y) + λwT w, (2)

= wT XT Xw − 2wT XT y + yT y + λwT w. (3)

The gradient is

∂J

∂w
= 2XT Xw − 2XT y + 2λw. (4)

Setting this to the zero vector, we get

(XT X + λI)w = XT y. (5)

If the number of dimensions is small, we can simply invert (XT X +λI) and left
multiply on both sides to get the solution for w. For larger problems, iterative,
gradient-descent algorithms can be used. We used Conjugate Gradients [14],
which requires that new search directions are perpendicular to ones used in
previous iterations. It has the advantage of being guaranteed to converge in no
more than d iterations, where d is the number of dimensions. Also, in practice
it converges much faster than simpler, gradient-based approaches.

A useful insight made by [12] is that RLSC can be kernelized, much like
the SVM and other algorithms. That is, instead of representing the classifier

4



in terms of parameters of the decision boundary, we can represent it in terms
of weights on the examples. Let c be a n-length vector, where n is the number
of training examples. Consider the RLSC solution (equation 5). Making the
substitution w = XT c, we get

XT XXT c + λXT c = XT y. (6)

The Representer Theorem (Appendix B in [12]) shows that this substitution
does not reduce the expressiveness of the classifier. Note that removing the XT

from the left of each term does not affect the validity of the solution,

XXT c + λc = y. (7)

Note that XXT is a matrix of dot-products between example vectors. In other
words, (XXT )ij = xi · xj . Here we show how RLSC can solve for non-linear
decision boundaries without explicitly representing the higher-dimensional data
points. Consider projecting the data to a higher-dimesnsional space. Let Φ :
Rd → RD be such a projection. Let’s rename XXT to K and replace each entry
with Kij = Φ(xi) · Φ(xj). Now, solving

(K + λI)c = y (8)

gives us the RLSC classifier. We use K = XXT to find a linear decision bound-
ary and compute dot-products in a projected space to find a linear boundary
in that projected space (and a non-linear boundary in the original space). Note
that the classification output for a new example is the dot-products of all the
training examples with the new example, weighted by c. To reconcile nota-
tion with common practice, we write K(xi,xj) ≡ Φ(xi) · Φ(xj). Then, the
classification output for a new example, x, is

f(x) =
n∑

i=1

ciK(xi,x). (9)

We noted before the Conjugate Gradients is guaranteed to converge in at
most d iterations. By showing that the classifier can be represented in terms
of weights on the examples, we have shown that Conjugate Gradients is also
guaranteed to converge in at most n iterations. In other words, it will converge
in ≤ min(n, d) iterations.

2.2 Selecting the Regularization Parameter

We have discussed how to learn parameters for the RLSC decision boundary.
But, there is one parameter we have yet to discuss: the regularization parame-
ter, λ. Unlike the decision boundary parameters, we cannot simply minimize the
objective since we would always choose λ = 0, which is rarely the best choice.
A popular choice to determine the regularization parameter is cross-validation.
The training set is broken up into N sets. Labels for each set are given by a

5



classifier trained on the remaining sets. Cross-validation gives an approxima-
tion of the generalization error. A larger N leads to a better approximation.
When N = n (one set per training example), this becomes leave-one-out cross-
validation (LOOCV), where each training example is labeled by a classifier
trained on all of the other training examples. An advantage of RLSC is that the
LOOCV error can be calculated analytically. [12] shows how this can be done,
but there is a mistake in the formula. We give the corrected formula and proof,
along with additional intuition.

We show that we can determine the LOOCV classification outputs for all
training examples with a single matrix inverse as our most expensive operation.
Let fi(x) be the classification output for x with the classifier trained on all
examples but xi. Define G = (K + λI)−1. We will show that

fi(xi) =
f(xi)− (KG)iiyi

1− (KG)ii
(10)

It is worth taking a moment to explain what this means. Recall that the solution
to RLSC is the vector c that solves (K + λI)c = y. So, c = Gy. The fact that
we can calculate LOOCV outputs with a single matrix inverse stems from the
fact RLSC can be solved with a single matrix inverse. Kc = KGy and Kc is
the vector of classification outputs (the ith entry of Kc is f(xi)). The output
for the ith example is computed via dot-product of the ith row of KG with the
column vector y. (KG)iiyi is the component of that dot-product that comes
from the ith example. So, one view is that the LOOCV calculation takes the
output from the fully trained classifier, removes the part due to the ith example,
then renormalizes to get the LOOCV output. Next, we give the proof of the
LOOCV formula.

Define Yi to be vector where Y i
j = yj for j 6= i and Y i

i = fi(xi). Since fi(·)
is the RLSC classifier trained on all examples except the ith, it minimizes∑

j 6=i

(Y i
j − fi(xj))2 + λcT Kc. (11)

Since Y i
i = fi(xi) (by definition), it also minimizes

n∑
i=1

(Y i
j − fi(xj))2 + λcT Kc, (12)

where the sum is now over all training examples. Thus, fi is the solution to
a modified RLSC problem where the set of training example labels is Yi. In
other words, Kc = KGYi, or

fi(xi) =
∑

j

(KG)ijYi
j , (13)

= f(xi)− (KG)iiyi + (KG)iifi(xi), (14)

=
f(xi)− (KG)iiyi

1− (KG)ii
, (15)

6



as we wanted to show.
Being able to calculate the LOOCV error with a single matrix inverse can

be a significant computational advantage. For moderate size problems, where
taking the inverse is not too burdensome, we can train a classifier on the full
set of training examples and calculate the LOOCV error with a single matrix
inverse.

2.3 Weakness of LOOCV Bounds

The calculation of LOOCV error becomes difficult for large problems (such as
when the number of training examples numbers in the tens of thousands). [15]
proved bounds on the LOOCV error for a certain class of kernel classifiers.
[12] extended those to RLSC. We applied these bounds to a text classification
problem with the intent of using them to select the regularization parameter
[16]. We found that the bound was accurate for large values of the regularization
parameter, but quickly decayed as we decreased λ, greatly over-estimating the
error for smaller values. As a result, the bound always selected a regularization
parameter that was too large. We did not see how the bound could be used as
part of a method for selecting a reasonable regularization parameter. It seems
that until better bounds or approximations are put forward, it is still necessary
to use cross-validation for the determination of the regularization parameter on
large problems.

3 Making use of POS Information

Now we return to the problem of using part-of-speech information for transfer.
As we have discussed, we believe that different types of text classification prob-
lems may use parts-of-speech in different ways. Nouns may be more useful for
topic classification while determiners may be more useful for author identifica-
tion. This section addresses the question, how do we transfer knowledge from
the reference tasks to the target task? We discuss two ideas. The first interprets
the regularization term for a regularized linear classifier as a Gaussian prior and
learns a diagonal covariance matrix based on classifiers trained on reference task
data. We show that this is equivalent to a certain pre-processing of the data. In
the next section, we give experimental results. The second idea involves a direct
modification of the kernel. We provide an outline of how we might modify the
kernel and give pointers to relevant publications.

3.1 Learning a Regularization Prior

The regularization term on a regularized linear classifier can be interpreted as
the negative log-likelihood of a zero-mean Gaussian. The analogy is particularly
compelling for Regularized Logistic Regresion [17]. We modify the objective by
inserting the inverse covariance matrix, Λ−1, into the regularization term. The

7



revised RLSC objective is

J = (Xw − y)T (Xw − y) + λwT Λ−1w. (16)

The standard form of RLSC can be seen as using an identity inverse covariance
matrix.

We propose to use data from reference tasks to learn entries in the inverse
covariance matrix. The logic is as follows. Let f : Rn×d × Rn → Rd be a
classification algorithm that learns a linear decision boundary. Given a set of
training data, examples X and binary y, it returns a vector of decision boundary
weights, w. Let p : Rn×Rd → R specify a distribution on examples and labels.
We assume that each classification task has a unique p of its own; we also
assume that all possible classification tasks can be indexed, 1, . . . , N . Let pi be
the example/label distribution for the ith classification task. Let −i represent
the ith task with its labels reversed. Finally, let q : Z → R specify a distribution
on tasks. We assume that q(i) = q(−i). The examples for a task are drawn by

• selecting n, the number of examples to be drawn,

• drawing a task, i, from the task distribution, q, and

• drawing n examples/labels from the distribution for task i, pi.

The classification function, f , maps a set of examples to a weight vector.
Hence, the above model gives us a joint distribution for weights over all possi-
ble features. Note that the distribution is centered—the mean is 0 (due to our
q(i) = q(−i) assumption). We model the distribution on weights as a Gaussian.
Since our mean is zero, the covariance matrix specifies the distribution.

We now have a model for classification weights. Furthermore, the reference
data can provide us with samples from this distribution. We are given sets of
examples and their labels. We can apply the classifier to get out weight vectors.
We treat each weight vector as a sample from the weight vector distribution.
This would work great... if only we had enough samples. It is unlikely that we
would be able to amass sufficiently many labeled data sets to reasonaly estimate
a joint (or even marginal!) distribution across the full set of features. Note that
the weight distribution for a feature can be very peaked. It is not uncommon
for a feature to have very small weights for most tasks and large weights for
a handful of tasks. This is where the part-of-speech (POS) information comes
in. We can use the POS information to usefully group together sets of features.
While there is only one feature for the word “baseball”, there may be thousands
of unique nouns. So, with only a few data sets, we can quickly gather tens- or
hundreds-of-thousands of weight samples for nouns. In lieu of trying to learn
a full covariance matrix, or even the full diagonal of a covariance matrix, we
learn a diagonal covariance matrix where words that are of the same POS are
constrained to have the same value. To estimate the covariance for a POS class,
we average squared weights over all words of that POS and all reference tasks.

In the next section, we show that using a non-identity covariance matrix is
equivalent to pre-processing the input data. Later we give experimental results
using this technique.

8



3.2 Equivalence of Regularization Prior to Example Pre-
Processing

To gain a better understanding of how the addition of the inverse covariance
matrix affects a regularized linear classifier, we compare it to another modifi-
cation, pre-processing of the example vectors. We consider the general form of
regularized linear classifiers. Recall that the objective is

J =
n∑

i=1

L(yixT w) + λwT w. (17)

Interpreting the regularization term as a Gaussian prior and inserting a non-
identity covariance matrix, we get

J =
n∑

i=1

L(yixT w) + λwT Λ−1w. (18)

Note that since Λ is a covariance matrix, it is positive definite, which means that
it’s and it’s inverse’s square roots exist. Let L = Λ1/2. Consider the substitution
w = Λ1/2v. The objective becomes

J =
n∑

i=1

L(yixT Λ1/2v) + λvT v. (19)

So, introducing a non-identity covariance matrix is equivalent to using x′ =
xT Λ1/2 as a data pre-processing step.

3.3 Modifying the Kernel Matrix

Viewed in the light of the regularization term representing a Gaussian prior on
the weight vector, the insertion of the inverse covariance matrix seems sensible.
However, from a kernel perspective it is quite odd. In this section, we discuss the
idea of directly modifying the kernel matrix. First, we show that a non-identity
covariance matrix is not in any way equivalent to a modification to the kernel
matrix. Then, we discuss some related spectral clustering work which may be
used to transfer part-of-speech information from reference tasks to target task
by learning a special kernel matrix. This idea is much less developed, so we only
touch on the high points and do not get to mathematical details.

To show that the Gaussian prior interpretation is not equivalent to a kernel
modification, we return to the kernel version of RLSC. We make the substitu-
tions w = XT c and K = XXT . The objective is

J = cT KKc− 2cT Ky + yT y + λcT Kc. (20)

Taking the Gaussian prior interpretation and adding an inverse covariance ma-
trix would involve modifying the kernel matrix, K, in the last term only. Pre-
processing the input data as described above would inolve modifying the kernel

9



matrix, K, in only the first two terms. Neither change is equivalent to making
a substitution for K.

We now know that a kernel matrix modification is different from the other
ideas we have discussed. A modification to the kernel matrix effectively projects
the data into an alternate space. The classifier then learns a decision boundary
in that alternate space. What we need is a way to learn a kernel matrix given
a set of reference task problems. Whereas with the covariance matrix, it was
sensible to simply build classifiers on the reference task data and average weight
values, there is no clear justification for doing something similar with the kernel
matrix.

We consider spectral clustering as a way to modify the kernel matrix to trans-
fer POS information from the reference task(s). Spectral clustering considers
the problem of clustering together data points based on their eigenspace. Given
an affinity (similarity) matrix, K, it associates the points into clusters so as to
minimize the similarities between points in different clusters. This is the tradi-
tional framing of the problem. Recently, [18], considered the reverse problem.
Given a clustering, can one learn a kernel matrix that minimizes the similari-
ties between points in different clusters. Though this may seem strange, it is
very similar to the problem of classification; most classification algorithms use
different loss functions than the normalized cut objective that is often used for
spectral clustering. But, the input is identical—examples grouped into clusters
or classes. Hence, our reference data can serve as input to such an algorithm.

What remains to be discussed, and, what we have yet to figure out, is how
to incorporate part-of-speech information. Similar to the reasoning behind not
learning a full covariance matrix, it may be overkill to try to learn an uncon-
strained kernel matrix over the reference task data. Whereas in other types
of applications, individual features may usefully transfer from one problem to
another, in text classification, the words that are useful in one task are rarely
useful in another (unless there is topic overlap, which we see as a less interesting
problem). [18] considers a kernel matrix of the form

kα(x, y) = exp(−(x− y)T diag(α)(x− y)), (21)

where x and y are data points and α serves as weights on the feature values. In
learning the kernel, we might restrict entries of α of the same parts-of-speech
to be equal to each other.

4 Experiments

We ran experiments to evaluate the idea of interpreting the regularization term
as a Gaussian prior and learning a covariance matrix. The results are poor. We
were not able to reduce error on the target task, even when we tried exponen-
tiating the weights trained on reference task classifiers and using a very small
training set for the target task.

To evaluate our idea, we ran text classification experiments on the 20 News-
groups data set. 20 Newsgroups (as the title suggests) is a collection of news-

10



group posts from 20 different newsgroups from the mid 1990s. There are approx-
imately 1000 posts per newsgroup. We use the “20news-bydate” version, which
has dupliates removed, posts are sorted within each newsgroup by date into
train/test sets and newsgroup-identifying headers are discarded. Before pass-
ing the documents to Adwait Ratnaparkhi’s POS tagger2, we (1) removed lines
of UUEncoded text, (2) removed quote characters from the beginning of lines,
and (3) removed periods and at-signs from e-mail addresses (as they tended to
confuse the tagger). We then (4) ran Ratnaparkhi’s tagger and further pro-
cessed output from the tagger. We (5) lower-cased all alphabetic characters,
(3) discarded tokens of length 25 or greater, (4) converted all digits to ’D’, and
(5) removed non-alphanumeric beginning and ending characters. We computed
a document vector for each post, consisting of the number of times each word
occured in that post. We transformed each count by log(x + 1) and then nor-
malized each vector to (L2-norm) length 1. We did not stem or use a stop
list.

To create a problem suitable for transfer, we grouped 19 of the newsgroups
into 5 distinct sets, religion, computers, recreation, science and politics. For
each set, we took as the target task the problem of classifying posts within that
set. For example, the politics set includes talk.politics.misc, talk.politics.guns
and talk.politics.mideast. The politics target task was to assign a post to one of
the three politics newsgroups. We used the remaining newsgroups as reference
data. This division ensured that the target topics were sufficiently different
from the reference topics; training examples from the reference tasks would be
of little or no direct use for the target task (though we did not test this, e.g.,
by using the output of the reference task classifiers as input for the target task
classfier). We used 10 training examples per class for the target task.

We first used the reference data to select a regularization parameter, λ.
For each of 10 rounds, we chose 10 training examples/class from the reference
data and computed LOOCV error (using the formula discussed in section 2.2.
We chose the regularization parameter with the lowest average LOOCV error
over those trials. Common choices were λ = 10−2 and λ = 10−3. We took
the squared weights learned for the selected value of λ, rescaled them so that
the average value was 1 and then averaged within POS groupings. We used a
diagonal inverse covariance matrix and set the entry for each feature to 1/vp

where v is the average weight-square value for the feature’s POS. We used p to
scale the entries of the inverse covariance matrix.

We found that the performance was quite poor. We never saw a significant
improvement compared to using the identity covariance matrix. The results
are given in Table 2. The reported experiments used the full set of possible
POS tags. We give the square-weight values that we learned from the reference
data in Table 3. These are somewhat surprising. Many parts-of-speech that are
not usually associated with topic classification problems, such as wh-pronouns,
possessive pronouns and determiners are given very large weights. This may
be due to the fact that the 20 Newsgroup problem is somewhat of an author

2Available from http://www.cis.upenn.edu/∼adwait/statnlp.html.

11



religion computers recreation science politics
p = 0 0.5371 0.6389 0.4534 0.5108 0.4796

p = 0.25 0.5374 0.6392 0.4535 0.5108 0.4796
p = 0.5 0.5371 0.6393 0.4550 0.5109 0.4796
p = 1 0.5369 0.6393 0.4603 0.5109 0.4795
p = 2 0.5336 0.6430 0.4796 0.5113 0.4794

Table 2: Shown are averaged classification errors for the target task. The high
errors are due to the fact that the classes are closely related and we use only 10
training examples per class. p indicates to what power covariance estimates from
the reference data set were taken. p = 0 corresponds to the identity covaraince
matrix, which is equivalent to the standard RLSC formulation. No setting of
p yields any significant improvement over the baseline. Performance quickly
degraded when we tried larger values of p (not shown).

identification task, since each newsgroup has its own style of writing. It also
suggests that there may yet be value in the idea of learning a covariance matrix,
but that we may need to group parts-of-speech to see a benefit. For a POS
such as WP$ (whose), our attempts to learn a covariance appear to be fruitless
because they vary so much across different training sets. Whereas personal
pronouns (PRP) are given weights within a narrow range, so the covariance
learned on the reference tasks is more likely to transfer to the target task.
Unfortunately, we did not have time to run additional experiments, but we plan
to experiment with the idea of restricting the covariance estimation to groups
of POS which show less weight variation between tasks.

5 Summary

We have described a method for transfering part-of-speech information from a
set of reference tasks to a target task. Experimentally we found it to perform
poorly. But, an analysis of the weights learned on reference tasks indicates that
there is room for improvement; some POS classes show consistency in learned
weights across reference tasks. We may find that the technique works better
when we group parts-of-speech based on weight variability. We are also very
interested in the idea of learning a kernel matrix for the target task based on
reference task data. This may be a more natural approach since it directly
modifies the space in which the examples lie and it scaling should not be an
issue like it is for the Gaussian prior idea. We would also like to consider other
natural language information, such as sentence structure.

References

[1] Martin Szummer and Tommi Jaakkola. Information regularization with
partially labeled data. In Neural Information Processing Systems 15, 2003.

12



POS religion computers recreation science politics
cc 15.68 20.18 22.91 15.04 15.08
cd 3.69 3.78 3.00 3.44 3.46
dt 27.00 31.61 27.94 30.43 29.83
ex 0.07 18.26 1.69 0.14 3.61
fw 0.14 0.05 0.13 0.06 0.23
in 16.48 17.16 16.94 16.63 14.54
jj 0.13 0.14 0.13 0.16 0.20
jjr 0.36 0.28 0.15 0.19 0.23
jjs 0.27 0.24 0.33 0.20 0.24
md 6.02 5.24 3.12 5.13 4.85
nn 0.38 0.26 0.29 0.34 0.43
nnp 0.28 0.18 0.32 0.26 0.31
nnps 0.13 0.06 0.07 0.07 0.12
nns 0.45 0.25 0.29 0.23 0.30
pdt 3.55 5.96 0.48 3.06 3.88
pos 6.10 5.53 4.70 7.26 8.68
prp 78.30 74.75 79.09 75.71 72.12
prp$ 47.10 110.09 49.76 29.25 49.37
rb 0.82 0.93 0.54 0.83 0.85
rbr 0.18 0.46 0.72 1.39 0.23
rbs 1.40 0.10 0.10 0.57 0.13
rp 2.49 1.31 1.72 2.52 3.07
to 18.63 21.05 21.98 21.46 18.01
uh 0.09 0.11 0.09 0.05 0.09
vb 0.47 0.33 0.35 0.41 0.37
vbd 0.27 0.22 0.18 0.21 0.17
vbg 0.30 0.23 0.27 0.25 0.29
vbn 0.22 0.13 0.12 0.18 0.14
vbp 0.87 0.77 1.07 0.88 0.61
vbz 1.17 2.13 1.89 1.66 1.56
wdt 2.14 0.57 0.17 2.27 3.64
wp 19.54 33.46 28.16 14.68 8.72
wp$ 1.30 0.02 4.05 1.17 2.31
wrb 8.65 13.13 7.55 13.21 10.03

Table 3: Shown are average squared weights for different parts-of-speech trained
on the reference task data. Many large weights are found on parts-of-speech that
are not usually associated with topic classification tasks, such as wh-pronouns
(WP), possessive pronouns (PRP$) and determiners (DT). Note that these have
been rescaled so that the average feature (not POS) has a squared weight of 1.

13



[2] Xiaojin Zhu, John Lafferty, and Zoubin Ghahramani. Semi-supervised
learning using gaussian fields and harmonic functions. In Machine Learn-
ing: Proceedings of the Twentieth International Conference, 2003.

[3] Jason D. M. Rennie. Improving multi-class text classification with naive
bayes. Master’s thesis, Massachusetts Institute of Technology, 2001.

[4] J. R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81–106,
1986.

[5] Yiming Yang and Xin Liu. A re-examination of text categorization meth-
ods. In Proceedings of the ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, 1999.

[6] William W. Cohen. Fast, effective rule induction. In Procedings of the
Twelfth International Machine Learning Conference (ICML-95), 1995.

[7] Erik Wiener, Jan O. Pedersen, and Andreas S. Weigend. A neural network
approach to topic spotting. In Fourth Annual Symposium on Document
Analysis and Information Retrieval (SDAIR-95), 1995.

[8] Fan Li and Yiming Yang. A loss function analysis for classification meth-
ods in text categorization. In Proceedings of the Twentith International
Conference on Machine Learning, pages 472–479, 2003.

[9] Jason D. M. Rennie and Ryan Rifkin. Improving multiclass text classifi-
cation with the Support Vector Machine. Technical Report AIM-2001-026,
Massachusetts Insititute of Technology, Artificial Intelligence Laboratory,
2001.

[10] Thorsten Joachims. Text categorization with support vector machines:
Learning with many relevant features. In Proceedings of the Tenth European
Conference on Machine Learning, 1998.

[11] Tong Zhang and Frank J. Oles. Text categorization based on regularized
linear classification methods. Information Retrieval, 4:5–31, 2001.

[12] Ryan Rifkin. Everything Old Is New Again: A Fresh Look at Historical
Approaches in Machine Learning. PhD thesis, Massachusetts Institute of
Technology, 2002.

[13] A. E. Hoerl and R. W. Kennard. Ridge regression: biased estimation for
nonorthogonal problems. Technometrics, 12(1):55–67, 1970.

[14] Jonathan Richard Shewchuk. An introduction to the
conjugate gradient method without the agonizing pain.
http://www.cs.cmu.edu/∼jrs/jrspapers.html, 1994.

[15] Tommi Jaakkola and David Haussler. Probabilistic kernel regression mod-
els. In Proceedings of the Seventh International Workshop on Artificial
Intelligence and Statistics, 1998.

14



[16] Jason D. M. Rennie. On the value of leave-one-out cross validation bounds.
http://www.ai.mit.edu/∼jrennie/writing/loocv.ps.gz, December 2003.

[17] Jason D. M. Rennie. On L2-norm regularization and the Gaussian prior.
http://www.ai.mit.edu/∼jrennie/writing/l2gaussian.ps.gz, May 2003.

[18] Francis R. Bach and Michael I. Jordan. Learning spectral clustering. In
Advances in Neural Information Processing Systems 16, 2004.

15


