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1 Introduction

The Smooth Hinge Classification (SHC) minimization objective is

JRLR =
n∑

i=1

h(yi · ~xT
i ~w) +

λ

2
~wT ~w, (1)

where {~x1, . . . , ~xn}, xi ∈ Rd, are the training examples and {y1, . . . , yn}, yi ∈
{+1,−1}, are the labels and h(·) is the smooth hinge loss function:

h(z) =


1
2 − z if z ≤ 0

1
2 (1− z)2 if 0 < z < 1

0 if z ≥ 1
. (2)

Note that the derivative is zero to the right of the margin, one to the left of the
margin and linearly interpolates between the two values within the margin:

h′(z) =

 −1 if z ≤ 0
z − 1 if 0 < z < 1

0 if z ≥ 1
. (3)

See [2] for a discussion of the Smooth Hinge Loss function. We wish to extend
this to multiple, ordinal labels, as we did for Logistic Regression in [1]. As before,
we use l − 1 thresholds, {θ1, . . . , θl−1} to represent the segments. We concern
ourselves with the “all-threshold” objective for ordinal regression/classification
and find no need to define “thresholds” at ±∞ as we did before.

2 All-Threshold

The All-Threshold Ordinal Smooth Hinge Classification (AOSHC) minimization
objective is

JAll =
n∑

i=1

yi−1∑
k=1

h(~xT
i ~w − θk) +

l−1∑
k=yi

h(θk − ~xT
i ~w)

 +
λ

2
~wT ~w. (4)

1



The partial derivative wrt each weight is

∂JAll

∂wj
=

n∑
i=1

yi−1∑
k=1

xijh
′(~xT

i ~w − θk)−
l−1∑

k=yi

xijh
′(θk − ~xT

i ~w)

 + λwj . (5)

We can also write this compactly using matrix notation. Define ~s(k) such that

si(k) =
{

+1 if k ≥ yi

−1 if k < yi
. Then,

∂JAll

∂ ~w
= λ~w −

l−1∑
k=1

XT [~s(k) ∗ h′(~s(k) ∗ (θk −X ~w))], (6)

where ∗ denote element-wise multiplication. Using our definition for ~s(k), the
partial derivative wrt each threshold is

∂JAll

∂θk
= ~1T [~s(k) ∗ h′(~s(k) ∗ (θk −X ~w))] (7)
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