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Abstract

Sums aren’t really bad, but they have a tendency to create non-
convexities. For example, learning parameters for Logistic Regression
is convex, but learning parameters for a mixture of Logistic Regression
models is not. In fact, it is not a single sum of logarithms that causes
problems, but two. Every model includes at least an implicit sum or in-
tegral hidden inside the normalization constant. When the unnormalized
model also includes a sum, there is the potential for it to be the difference
between two convex functions, which is not generally convex.

Consider the problem of binary classification. We have a set of data points,
X = {&,...,%,}, and a set of labels, ¥ = {y1,...,yn}, ¥v; € {+1,—1}. We
would like to learn weights for a Logistic Regression model,
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where the {w;} are the model parameters and the {f;} are feature functions.
The normalization constant is Z; = exp (ZJ w; fi(zi, 1)) +exp (ZJ w; fi(zi, —1)).
For optimization purposes, this model is better written in log-form:

log P(91X) = Z ijfj(xij, Yi) — Zlog Z;. (2)

The first term is a linear function of the weights. Linear functions are both
convex and concave. The sum of two convex functions is convex; the sum of two
concave functions is concave. So, if log Z; is a convex function of the weights,
then the entire model is a concave function of the weights (due to the minus
sign). Consider a simplified model with a single weight and feature function.
log Z; is convex for the simplified model if
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A little bit of reversible manipulation leaves us with:

(ew161+w2C2 + ewlchrwzcl) > e%(w161er2C2+w1<:2+w261)7 (4)
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which is true due to the convexity of exponentiation. This generalizes to any
number of weights/features. Hence, log Z; is convex and the entire model is
concave.

Now, we consider a mixture of Logistic Regression models,

log P(§]1X) = Z log (ezj w;ifi(@ijyi) 4 o2 Ujfj(:mw%)) _ Z log Z;. (5)

Immediately we see that this will generally not be concave. As we have seen,
the log of a sum of exponentials is convex. A sum of convex functions is convex,
so the first term is convex. But, log Z; is, at best, convex, thus giving us the
difference between two convex terms, which is generally not convex. One sum
of logarithms is ominous, but two are real trouble.



