Why Sums are Bad

Jason D. M. Rennie jrennie@alum.mit.edu

November 4, 2004

Abstract

Sums aren't really bad, but they have a tendency to create nonconvexities. For example, learning parameters for Logistic Regression is convex, but learning parameters for a mixture of Logistic Regression models is not. In fact, it is not a single sum of logarithms that causes problems, but two. Every model includes at least an implicit sum or integral hidden inside the normalization constant. When the unnormalized model also includes a sum, there is the potential for it to be the difference between two convex functions, which is not generally convex.

Consider the problem of binary classification. We have a set of data points, $X = {\vec{x_1}, \ldots, \vec{x_n}}$, and a set of labels, $\vec{y} = {y_1, \ldots, y_n}$, $y_i \in {+1, -1}$. We would like to learn weights for a Logistic Regression model,

$$P(\vec{y}|X) = \prod_{i=1}^{n} \frac{1}{Z_i} \exp\left(\sum_j w_j f_j(x_{ij}, y_i)\right),\tag{1}$$

where the $\{w_j\}$ are the model parameters and the $\{f_j\}$ are feature functions. The normalization constant is $Z_i = \exp\left(\sum_j w_j f_j(x_{ij}, 1)\right) + \exp\left(\sum_j w_j f_j(x_{ij}, -1)\right)$. For optimization purposes, this model is better written in log-form:

$$\log P(\vec{y}|X) = \sum_{i} \sum_{j} w_j f_j(x_{ij}, y_i) - \sum_{i} \log Z_i.$$
(2)

The first term is a linear function of the weights. Linear functions are both convex and concave. The sum of two convex functions is convex; the sum of two concave functions is concave. So, if $\log Z_i$ is a convex function of the weights, then the entire model is a concave function of the weights (due to the minus sign). Consider a simplified model with a single weight and feature function. $\log Z_i$ is convex for the simplified model if

$$\frac{\log\left(e^{w_1c_1} + e^{w_1c_2}\right) + \log\left(e^{w_2c_1} + e^{w_2c_2}\right)}{2} \ge \log\left(e^{\frac{c_1}{2}(w_1 + w_2)} + e^{\frac{c_2}{2}(w_1 + w_2)}\right)$$
(3)

A little bit of reversible manipulation leaves us with:

$$\frac{1}{2} \left(e^{w_1 c_1 + w_2 c_2} + e^{w_1 c_2 + w_2 c_1} \right) \ge e^{\frac{1}{2} (w_1 c_1 + w_2 c_2 + w_1 c_2 + w_2 c_1)}, \tag{4}$$

which is true due to the convexity of exponentiation. This generalizes to any number of weights/features. Hence, $\log Z_i$ is convex and the entire model is concave.

Now, we consider a mixture of Logistic Regression models,

$$\log P(\vec{y}|X) = \sum_{i} \log \left(e^{\sum_{j} w_{j} f_{j}(x_{ij}, y_{i})} + e^{\sum_{j} v_{j} f_{j}(x_{ij}, y_{i})} \right) - \sum_{i} \log Z_{i}.$$
 (5)

Immediately we see that this will generally not be concave. As we have seen, the log of a sum of exponentials is convex. A sum of convex functions is convex, so the first term is convex. But, $\log Z_i$ is, at best, convex, thus giving us the difference between two convex terms, which is generally not convex. One sum of logarithms is ominous, but two are real trouble.