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Zhang and Oles [1] note that parameters for the Support Vector Machine can-
not be optimized direcly (using traditional, gradient-descent-type approaches)
due to the use of the hinge loss function,

g(z) = max(0, 1− z). (1)

The hinge loss function has a discontinuous derivative at z = 1. They propose
an alternate, smooth loss based on the squared loss,

h(z) =
{

(1− z)2 if z ≤ 1
0 if z > 1 (2)

This “modified squared loss” is similar to the hinge loss. In particular, it serves
as an upper bound to the step function that is tight at z = 0 and z ≥ 1. See
Figure 1 for plots of the two loss functions. Unlike the hing loss, the modified
squared loss is sufficiently smooth to be optimized via simple, gradient-descent-
type algorithms.

The full minimization objective for Modified Regularized Least Squares Clas-
sification (MRLSC) is

JMRLSC =
n∑

i=1

h(yi~x
T
i ~w) +

λ

2
~wT ~w, (3)

where {~x1, . . . , ~xn}, ~xi ∈ Rd are the training examples, ~y ∈ Rn are the training
labels, ~w ∈ Rd is the weight vector and λ is the regularization parameter. The
gradient is

∂JMRLSC

∂ ~w
=

n∑
i=1

yi~xih
′(yi~x

T
i ~w) + λ~w, (4)

where h′(z) =
{

2(z − 1) if z ≤ 1
0 if z > 1 .
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Figure 1: Shown are the Modified Least Squares (MLS), Hinge and Step loss
functions.
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