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The Regularized Logistic Regression (RLR) minimization objective is

n
A
JRLR = ;bg(l + exp(—y; - & W)) + §IUTU7, (1)
where {#1,...,Z,} are the training examples and {yi,...,y,} are the labels.

The per-example (Logistic) loss is g(z) = log(1 4 exp(—=z)).

We make two modifications to RLR that improve its ability to generalize:
(1) we use a generalized form the Logistic, and (2) we shift the Logistic by one.
These two modifications have the effect of encouraging a margin yet ignoring
examples that are predicted well by the model. This modified Logistic Regres-
sion, which we will call Maximum-Margin Logistic Regression (MMLR), can be
viewed as an approximation to the Support Vector Machine.

Zhang and Oles discuss the Generalized Logistic! loss [1],

9(2,7) = %10g<1 + exp(—72). (2)

~ is what we call the “sharpness.” Define the sharpness of a function f(x) as
the maximum magnitude of the second derivative,

>’f(2)
020z

sharpness(f) = max
z

: (3)

Define the closure f(z) = g(z,7). Then sharpness(f) = 7.

At v = 1, the Generalized Logistic loss is the Logistic loss; it is a re-scaled
Logisitic for other values. Figure 1 shows graphs of the Logistic and General-
ized Logistic. The Generalized Logistic is a smooth approximation of the Hinge
loss. As v — oo, sharpness increases without bound and the Generalized Lo-
gistic approaches the Hinge loss, h(z) = max(0,—z). Smaller values of ~y yield

increasingly smooth approximations of the hinge loss.

n fact, Zhang and Oles discuss the shifted Generalized Logistic. We introduce the un-
shifted version here, then discuss the shifted version later.
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Figure 1: The left graphic shows the Logistic loss (middle) and the Generalized
Logistic (GL) loss for v = 1/3 (top) and v = 3 (bottom). The right figure
shows the Logistic loss, but the axes have been scaled by a factor of 3. Note the
similarity of the scaled Logistic to the Generalized Logistic (v = 3).

For our Maximum-Margin Logistic Regression, we use a shifted version of
the Generalized Logistic Loss. We subtract one from z so that the “hinge”
occurs at z = 1.

g4 (27) = §log<1 T exp(y(1 - 2)). (4)

We use a large value of v (e.g. v = 10) so that our loss function approximates
the Hinge loss. The minimization objective for MMLR is

1 A
JMMLR = 5 Zlog(l +exp(y(1 — 2))) + §wTw, (5)
i=1

where 2; = y;-Z7w. Optimization of the parameters can be done efficiently with

first-order gradient descent-type techniques. Note that 22 +8(57’Y) = - 1?;5’&%1&1))) )

The gradient of the objective is

&]Mﬂ _ - exp(v(1 — 2))
ow; 27 +exp(y(1 = z))

Yi%ij + )\wj. (6)
=1

Note that this model could be used as part of an iterative method for learning
SVM parameters. Each round, 7 is increased according to a pre-set schedule.
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