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1 Introduction

We have two goals: (1) to find a low-dimensional representation of text that
allows generalization to unseen data, and (2) to group documents according to
their similarities. Clearly these tasks are related—similar documents can be
represented more compactly than dissimilar documents and vice versa. First,
we discuss a model for text that smoothly penalizes the rank of the parameter
matrix. Then, we discuss how to apply this model to clustering.

2 Text Model

We use a generative model and assume that the documents are not identifiable
beyond their term frequency statistics. Let Y be the matrix of term frequency
statistics, one document per row. Let P (Y |X) be the likelihood model where X

is a matrix of parameters for the model. A simple example that we will use is a
set of multinomial models, one per document where each row of X parameterizes
the multinomial for the corresponding document. We take the product of these
per-document models to get P (Y |X). We assume a prior on the parameter
matrix, P (X). This prior is one way in which we determine the similarity of
documents, which, in turn, determines how compactly we can represent the
documents. We make use of the trace norm (sum of singular values of a matrix)
and discuss parameter and likelihood choices which are appropriate for its use.

2.1 Parameter Prior

The parameter prior for our model, P (X), is the vehicle through which we
obtain a reduced representation of the data. In particular, we want the prior
to give high weight to a matrix that reflects natural similarities in the data.
One natural bias is to weight highly parameter matrices of low rank. It is often
the case that data is produced from relatively few underlying factors. This
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Table 1: The first two columns give examples of pairs of unit length vectors.
The third column gives the trace norm of the matrix of stacked vectors. The
fourth column gives the sine of the angle between the vectors. The trace norm
is closely approximated by a linear function of sin θ.

reflects the idea that documents might be composed of a combination of a few
underlying themes or topics. This bias is common [2, 4, 1]. Another natural
bias for text is to assume that the vectors corresponding to the data are close
together. Term frequency vectors are often normalized to unit Euclidean length
and treated as points on the unit sphere. In this representation, we can measure
angles between vectors. Documents are similar if the angle between their vector
representations are close. The trace norm can be used as a (smooth) measure
of compactness of a set of vectors. It also has strong ties to matrix rank.

2.1.1 Trace Norm

The trace norm of a matrix is the sum of its singular values. Let X = UΣV T

be the singular value decomposition of X , where UT U = I , Σ = diag(σ), and
V T V = I . Then, the trace norm of X is

‖X‖Σ =
∑

i

σi. (1)

The trace norm is related to the rank of a matrix. In particular, Fazel (§5.1.4,
5.1.5 of [3]) showed that the convex hull of matrices with bounded rank r is
identical to the space of matrices with unit spectral norm and bounded trace
norm (≤ r). Furthermore, the trace norm provides information about how
“close” vectors are to each other.

To help the reader gain intuition for the trace norm, we provide simple
examples in Table 1. Listed are pairs of 2-dimensional vectors, their trace norm
when stacked as rows of a matrix, X = [X1; X2], and the sine of the angle
formed by the vectors (which, due to the simplicity of the example is just the
second component of X2). Unfortunately, the trace norm provides neither an
upper nor lower bound on rank. Nor is it a linear function of the sine of the
angle. However, it provides a smooth function of the matrix which is strongly
correlated with these measures. In the example, the trace norm is largest when
the vectors are perpendicular, and smallest when the vectors are co-linear. In
our example, the trace norm is closely approximated by a linear function of the
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sine of the angle between vectors, f(θ) = a sin θ + b where a = 2 −
√

2 and
b =

√
2.

Previous work on text modeling has focused on limiting the rank of the
representation of the term frequency matrix. Here, we use the trace norm to
give us a smooth penalty that encourages low rank and a compactness of the
parameter vectors.

2.1.2 Trace Norm Prior

We utilize the trace norm by incorporating it into the parameter prior. We
esablish a prior that is the exponentiated negative of the trace norm,

P (X) ∝ exp(−‖X‖Σ). (2)

Thus, maximization of a joint likelihood encourages a low-rank parameter ma-
trix with row/column vectors in relatively close proximity. The negative log-
likelihood (NLL) of the prior is the trace norm, so if we were to interpret our
model as an encoding framework, the value of the trace norm would serve as
the parameter encoding length [5].

2.2 Likelihood

The multinomial is a simple, standard model of term frequency for text. It is
the model of term frequency that results from the unigram model, where the
word for each position in the documents is drawn iid. The multinomial can be
parameterized in multiple ways. Most common is the mean parameterization,

P (y|θ) =
n!

∏

i yi!

∏

i

θ
yi

i , (3)

where n =
∑

i yi is the fixed document length and the parameter for word i,
0 ≤ θi ≤ 1, is also its expected rate of occurrence. The above is for a single docu-
ment, y, and parameter vector, θ. For multiple documents, we take the product
of likelihoods and stack parameters into a matrix, P (Y |Θ) =

∏

i P (Yi|Θi), where
indices indicate row vectors. The mean parameterization is intuitively pleasing
because each of the parameters {θi} is the expected rate of occurrence for the
corresponding word. However, the fact that the parameters are constrained
make it somewhat awkward to use with the trace norm prior. And, the loga-
rithmic transform applied to the parameters in the NLL means that intuition is
often wrong about the effects of small parameter changes. An alternate choice
is the so-called “natural parameterization.” The natural parameters are related
to the mean parameters through a simple formula,

θi =
exp(zi)

∑

j exp(zj)
. (4)

Unlike the mean paramterization, the natural parameters are unconstrained and
their interaction with the data in the NLL is linear, so the effects of parameter
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changes are easier to understand. In the next two sections, we discuss the
interactions of these parameterizations with the trace norm prior.

2.2.1 Mean Parameterization

For the mean parameterization, the likelihood values must be non-negative and
sum-to-one. We can take care of this restriction via transformation between the
parameters used for the prior, X , and those used for the likelihood, Θ,

Θij =
|Xij |

∑

j |Xij |
. (5)

Thus, our joint probability becomes P (Y |Θ)P (X). But, in this context, the
prior is meaningless since even as ‖X‖Σ → 0 (equivalently, P (X) → 1), we can
attain the maximum likelihood. Even a simple constraint on the trace norm,
such as ‖X‖Σ ≥ 1, is insufficient to overcome the extra degrees of freedom
introduced by the transform, (5). Why, then, don’t we apply the trace norm
prior directly to the mean parameters, P (Θ)? The reason is that this would
create an undesirable bias. The trace norm measures lengths using the L2 norm.
I.e. the trace norm of a mean parameter vector (which has unit L1 length) can
vary from 1 to 1

√

d
, where d is the dimensionality of the vector. Such a prior

would serve to encourage low entropy parameter vectors more than it would
encourage the set of parameter vectors to be of low rank. We can correct this bias
by replacing the L1 constraint with an L2 constraint on the parameter vectors
used for the trace norm calculation. Our joint probability is P (Y |Θ)P (X) where
(5) is used to convert between Θ and X . For the optimization, we apply the
constraint that each row of X has unit L2 norm. Thus, the trace norm of any
row of X is 1, and the prior only imparts a bias on the relative locations of
the parameter vectors, not their absolute locations. The values in Table 1 give
intuition for how the trace norm is affected by different orientations of a pair of
unit L2 length vectors.

2.2.2 Natural Parameterization

The natural parameterization leads to a simpler model. There is one undesirable
bias. However, this is fixed naturally by introducing a parameter hierarchy. We
begin with an short introduction to the exponential family of distributions.

A likelihood P (y|x) is in the exponential family if it can be written as

P (y|x) = a(y)b(x)ec(y)T d(x), (6)

where a and b are functions that return scalar values; c and d are functions
that return vector values. The density is in “canonical” form if c(y) = y; in
canonical form, d(x) is the natural paramter. For the multinomial, we have
a(y) = −∑

i log yi!, b(x) = log n! − n log
∑

i exp(xi), c(y) = y and d(x) = x, or

− log P (y|x) =
∑

i

log yi! − log n! + n log
∑

j

exp(xj) −
∑

i

yixi, (7)
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Figure 1: Shown are boundaries of regions enclosing the convex hull of the points
(.9, .07, .03), (.07, .03, .9), and (.03, .9, .07). Black (outer, solid) lines bound the
simplex. The blue (inner, solid) line bounds the mean parameter convex hull.
The red (dotted) line bounds the natural parameter convex hull. To construct
the natural parameter convex hull, we find natural parameter representations
of the three points, determine the convex hull in natural parameter space, then
transform the hull to mean parameter space. Viewed in mean parameter space,
the natural parameter convex hull is not convex.
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Figure 2: Graphical model for the multi-prior model.

where n =
∑

i yi is the document length. I.e. P (y|x) is in canonical form and
x is the natural parameter. As with any natural parameterization, the rate of
change in NLL for a small change in the parameter is the difference between
expected and empirical values.

It is valuable to understand how natural parameters behave on the simplex.
Due to the transformation between natural and mean parameters, (5), convex
combinations of natural parmeters do not lead to convex regions on the simplex.
Figure 1 provides an example.

Our natural parameter model is described by the joint distribution, P (X)P (Y |X),
where the likelihood is a product of natural parameter multinomials, P (Y |X) =
∏

i P (Yi|Xi), where Yi is the ith row of Y and P (X) is the trace norm prior.
This model prefers a low magnitude, low rank parameter matrix. The low rank
bias is desirable, but the low magnitude bias is not—it too strongly encour-
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ages points close to the middle of the simplex1. The trace norm prior penalizes
each row of X separately for its distance from the origin of the natural param-
eter space. The origin is the de facto “center” for the trace norm calculation.
However, the origin is usually a poor center for text—some words are simply
more common than others. We can shift the “center” by introducing a new
parameter vector which is added to each row of X for the likelihood parame-
ters. Let σ be this “center” parameter vector. Our updated joint distribution is
P (σ)P (X)

∏

i P (Yi|Xi + σ). X and σ are independent for generation (Y unob-
served), but dependent for inference (Y observed). We call this the “multi-prior”
model (see Figure 2). A natural choice for P (σ) is the trace norm prior2. In
effect, only a single parameter vector will be biased towards the origin. Hence,
for a large data set (many documents), this bias will be quite small.

Though unclear in the graphical model, the multi-prior model reflects hier-
archical structure in the data. It can be easily extended to deal with additional
structure, such as classes, sub-classes, etc.

3 Discussion

Use of the trace norm for a parameter prior for text modeling provides a smooth
low-rank. The trace norm prior can be utilized in either a mean parameter or
natural parameter framework. Each has minor issues that can be addressed
easily, yielding two frameworks for learning low-rank text models. We find the
natural parameter model particularly pleasing due to its intrinsic advantages—
lack of constraints, a simple derivative, and ease in modeling of hierarchical
structure.
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1The middle of the simplex corresponds to a natural parameter vector of all zeros.
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