
On The Value of Leave-One-Out

Cross-Validation Bounds

Jason D. M. Rennie
jrennie@csail.mit.edu

December 15, 2003

Abstract

A long-standing problem in classification is the determination of the
regularization parameter. Nearly every classification algorithm uses a
parameter (or set of parameters) to control classifier complexity. Cross-
validation on the training set is usually done to determine the regulariza-
tion parameter(s). [1] proved a leave-one-out cross-validation (LOOCV)
bound for a class of kernel classifiers. [2] extended the bound to Reg-
ularized Least Squares Classification (RLSC). We provide the (trivial)
extension to multiclass. Our contribution is empirical work. We evaluate
the bound’s usefulness as a selector for the regularization parameter for
RLSC. We find that it works extremely poorly on the data set we exper-
imented with (20 Newsgroups); the LOOCV bound consistently selects a
regularization parameter that is too large.

1 Introduction

A common problem in training a classifier (and most any learner, for that mat-
ter) is the selection of the regularization parameter. All modern classifiers use
a parameter to control the complexity of resulting model. The Support Vector
Machine (SVM) [3] uses C to trade off between minimizing loss on the training
data and minimizing the magnitude of the weight vector. Other kernel classifiers
(such as Regularized Logistic Regression (RLR) and Regularized Least Squares
(RLSC)) use a similar trade-off parameter. Naive Bayes [4] smooths probabil-
ity estimates by adding α to training data counts. Decision tree algorithms [5]
limit tree depth or prune back nodes. Setting the regularization parameter by
minimizing loss/error or maximizing likelihood on the training data results in
the most complex model. So, the regularization parameter is usually learned on
a holdout set or via cross-validation.

An excellent method for learning the regularization parameter is leave-one-
out cross-validation (LOOCV). Each training example is labeled by a classifier
trained on all other training examples. While this is efficient to calculate for
simple algorithms such as Naive Bayes, it is much less efficient for algorithms

1



such as the SVM, requiring the training of one classifier for each support vector.
[6] showed that the LOOCV error for RLSC can be computed efficiently given
knowledge of the diagonal entries of the inverse of an n-by-n matrix (n is the
number of training examples). But, this is still impractical for large data sets.
[1] proved LOOCV error bounds for a class of kernel classifiers including SVMs.
[2] showed that this class of bounds are also applicable to RLSC.

[2] discusses the use of these bounds for estimation of the generalization
error. But, our own experimental evidence indicates that these bounds are so
poor as to be almost useless. We ran binary and multiclass text classification ex-
periments on the 20 Newsgroups data set1. We found that the bounds greatly
over-predicted error for smaller regularization values and consistenly selected
too large a regularization value. In fact, you would do much better by simply
selecting the largest of the regularization parameters that gave the lowest train-
ing error (usually many settings gave the same training error). We report these
results.

2 Leave-One-Out Cross-Validation Bounds

Regularized Least Squares (RLSC) is a classification algorithm much like the
Support Vector Machine and Regularized Logistic Regression. It minimizes a
loss function plus a complexity penalty. A regularization parameter, λ, is used
to regulate the complexity of the classifier (the magnitude of the weight vector).
Given a matrix of training examples (one per row), X, and a vector of binary
labels, y, RLSC minimizes2

(Xw − y)T (Xw − y) + λwTw. (1)

RLSC can be kernelized, using a weight vector on the examples, c. The kernel
form can be appealing even when using the linear kernel since it can reduce
the number of parameters to be optimized (if the number of examples is less
than the number of features). For a vector of weights on examples, c, RLSC
minimizes

(Kc− y)T (Kc− y) + λcTKc, (2)

where K is the kernel matrix. The linear kernel is XXT ; setting K = XXT

makes kernel RLSC equivalent to minimizing Equation 1.
[2] shows that one can bound the LOOCV error of RLSC by

|xi : yi

∑
j 6=i

cjKij

 ≤ 0|. (3)

In other words, an example is classified correctly if, when its contribution to the
output is discarded, the example is still classified correctly.

1We use 20news-bydate.tar.gz from http://www.ai.mit.edu/∼jrennie/20Newsgroups.
2We discard the 1

l
constant that [2] uses.

2



We perform multiclass RLSC using one-versus-all (OVA). For each class, we
build a binary classifier that uses in-class examples as positive and out-of-class
examples as negative. A new example gets the label of the binary classifier that
gives the largest (most positive) output. [2] finds that this is an effective way to
use RLSC for multiclass classification. It is trivial to extend the LOOCV error
bounds given by [2] to the OVA multiclass case. Let ckj be the jth example
weight for the kth binary classifier. Multiclass LOOCV error is bounded by

|xi : yi 6= arg max
k

∑
j 6=i

ckjKij |. (4)

∑
j 6=i ckjKij is the example i classification output for the kth label, without the

contribution from example i. This is a direct extension of the bound given by
[2].

3 Experiments

To evaluate the goodness of these LOOCV error bounds, we ran text classi-
fication experiments on the 20 Newsgroups data set. 20 Newsgroups (as the
title suggests) is a collection of newsgroup posts from 20 different newsgroups
from the mid 1990s. There are approximately 1000 posts per newsgroup. We
use the “20news-bydate” version, which has dupliates removed, posts are sorted
within each newsgroup by date into train/test sets and newsgroup-identifying
headers are discarded. Our pre-processing consisted of (in order) (1) splitting
on space characters, (2) lower-casing all alphabetic characters, (3) discarding
tokens of length 25 or greater, (4) converting all digits to ’D’, and (5) removing
non-alphanumeric beginning and ending characters. We computed a document
vector for each post, consisting of the number of times each word occured in that
post. We transformed each count by log(x+1) and then normalized each vector
to (L2-norm) length 1. We did not stem or use a stop list. A pre-processed
(ready for Matlab) version of the data set, along with code we used for RLSC
is available at http://www.ai.mit.edu/∼jrennie/matlab/.

We ran two sets of experiments, one 20 class experiment using the entire data
set and 100 binary experiments using random pairs of classes. In each case, we
tested a wide range of lambda values, and, for each, calculated error on the
training set, error on the test set and the LOOCV error bound. We found the
results to be surprising. We didn’t expected the LOOCV error bound to closely
approximate the test error, but we did expected it to provide a good choice
of lambda. This was never the case. In fact, the LOOCV bound consistently
chose too high of a lambda. Test errors for the lambda with minimum LOOCV
bound were much higher (in one case, almost an order of magnitude higher)
than the lowest test error. We could have almost always done better (!) by
simply chosing the largest lambda from the set of lambdas that gave the lowest
error (often, many different lambdas yielded zero training error).

Table 1 gives the results for the full 20 class classification task. The lowest
test error (15.1%) was achieved with a setting of λ = 10−3. The LOOCV error

3



λ Train Test LOOCV
101 0.4019 0.5027 0.4618
1 0.2159 0.3449 0.3109

10−1 0.0704 0.2111 0.2456
10−2 0.0121 0.1625 0.4187
10−3 0.0004 0.1514 0.6959
10−4 0.0002 0.1658 0.7600
10−5 0.0001 0.1778 0.7731
10−6 0.0003 0.1977 0.7879

Table 1: Shown is classification error for different values of lambda on the
full 20 newsgroups classification task. The first column gives the regularization
parameter used. The second column gives training error. The third column gives
test error. The fourth column gives the LOOCV error bound. The LOOCV error
bound greatly over-estimates generalization error for small values of lambda.

λ Train Test LOOCV
101 0.2838 0.3137 0.2993
1 0.1072 0.1453 0.1325

10−1 0.0173 0.0579 0.0533
10−2 0.0006 0.0341 0.0736
10−3 0.0000 0.0329 0.1885
10−4 0.0000 0.0365 0.2755
10−5 0.0000 0.0391 0.2962
10−6 0.0000 0.0402 0.2984

Table 2: Shown is classification error averaged over 100 random binary classifi-
cation tasks for the 20 Newsgroup data set. Each round, we randomly selected
two (different) classes and trained a binary classifier. Each entry in the table is
averaged over 100 rounds. The first column gives the regularization parameter
used. The second column gives training error. The third column gives test
error. The fourth column gives the LOOCV error bound. The LOOCV error
bound greatly over-estimates generalization error for small values of lambda.

4



bound gave the lowest error for λ = 10−1, a parameter setting which gave
a much higher test error (24.6%). Even the parameter setting that gave the
lowest training error, λ = 10−5, yielded a better test error (17.8%).

Table 2 gives the averaged results for 100 binary classification tasks. Bi-
nary classifiers were trained and tested on random pairs of classes from the
20 Newsgroups data set. We made no effort to avoid repeating pairings. The
LOOCV error bound consistently over-estimated generalization error for small
values of lambda. In some cases, the setting selected by the LOOCV error
bound yielded a test error close to the smallest test error. Twice, it even chose
the setting that gave the lowest test error. One such case was talk.politics.guns
vs. talk.religion.misc. The LOOCV error bound was lowest for λ = 10−2. This
and a setting of λ = 10−3 both gave the lowest test error, 8.1%. However, it was
much more common for the LOOCV error bound to select a setting with a much
higher test error than the best setting. For example, in the rec.sport.baseball
vs. talk.religion.misc task, the LOOCV error bound was lowest for λ = 10−1,
a test error of 5.7%. The lowest test error was 1.2%, given by λ = 10−3. In
nearly every case, we could have done better using the training error to select
the value of lambda3. For every pairing, some value of lambda achieved zero
training error. The largest lambda with zero training error gave test error as
low or lower than the lambda selected by the LOOCV error bound in all but
one case. This is borne out in the table. A setting of λ = 10−3 gave an average
test error of 3.5%. A setting of λ = 10−1 gave the lowest average LOOCV error
bound, but much higher average test error, 6.6%.

4 Summary

Since every classification algorithm uses some sort of regularization parameter,
it is important to be able to learn that parameter in a reasonable way. [1] proved
LOOCV error bounds for a certain class of kernel classifiers. [2] extended those
bounds to RLSC. We ran experiments on the 20 Newsgroups data set with RLSC
using a wide range of regularization values. We found that the LOOCV error
bound consistently overestimated error for small values of the regularization pa-
rameter and did a very poor job of selecting the right regularization parameter.
We limited our experiments to a single text classification data set, so it may be
that these results are uncharacteristic of other domains and possibly other text
data sets.

References

[1] Tommi Jaakkola and David Haussler. Probabilistic kernel regression models.
In Proceedings of the Seventh International Workshop on Artificial Intelli-
gence and Statistics, 1998.

3We don’t recommended this as a general approach for selecting the regularization param-
eter. We found it curious that training error worked as well as it did!

5



[2] Ryan Rifkin. Everything Old Is New Again: A Fresh Look at Historical
Approaches in Machine Learning. PhD thesis, Massachusetts Institute of
Technology, 2002.

[3] Christopher J. C. Burges. A tutorial on Support Vector Machines for pattern
recognition. Data Mining and Knowledge Discovery, 2(2):121–167, 1998.

[4] Jason D. M. Rennie, Lawrence Shih, Jaime Teevan, and David R. Karger.
Tackling the poor assumptions of naive bayes text classifiers. In Proceedings
of the Twentieth International Conference on Machine Learning, 2003.

[5] Tom Mitchell. Machine Learning. McGraw-Hill Companies, Inc., 1997.

[6] P. J. Green and B. W. Silverman. Nonparametric Regression and Generalized
Linear Models: A Roughness Penalty Approach. Chapman and Hall, 1994.

6


