
The Log-Log Term Frequency Distribution

Jason D. M. Rennie

jrennie@gmail.com

July 14, 2005

Abstract

Though commonly used, the unigram is widely known as being a poor

model of term frequency; it assumes that term occurrences are indepen-

dent, whereas many words, especially topic-oriented ones, tend to occur in

bursts. Herein, we propose a model of term frequency that treats words

independently, but allows for much higher variance in frequency values

than does the unigram. Although it has valuable properties, and may be

useful as a teaching tool, we are not able to find any applications that

make a compelling case for its use.

1 The Unigram Model

The unigram is a simple, commonly used, model of text. It assumes that each
word occurrence is independent of all other word occurrences. There is one
parameter per word, θi,

∑

i θi = 1, which corresponds to that word’s rate of
occurrence. For a document of length l, the chance that a unigram with param-
eters {θi} yields term frequencies {xi} is

Puni

(

{xi}

∣

∣

∣

∣

∣

∑

i

xi = l; {θi}

)

=
l!

∏

i xi!

∏

i

θxi

i . (1)

The normalization constant, l!
Q

i
xi!

corresponds to the number of ways there are

to arrange the words so as to achieve the given frequency values.
An issue with the unigram is that it assigns low weight to the possibility

that a somewhat rare word may occur many times. It generally does a good
job of modeling common, “English” words such as “the,” “a” and “is.” But,
it tends to greatly underweight large frequency values for topic-oriented words.
For applications like classification, this leads to poor class-conditional estimates
and thus poor classification accuracy.

1.1 Binomial

We have mentioned that the unigram poorly models topic-oriented words. But,
the unigram allows for dependence between words. This dependence is mild,

1



especially for the case that is usual with English text—a large vocabulary, and
word rates almost strictly below 10%. Hence, for text, an excellent approxima-
tion to the unigram is a product of binomial distributions, one binomial for each
word. The product of binomials uses the same parameters as the unigram (and
they have the same interpretation). For a document of length l, the chance that
a product of binomials with parameters {θi} yields term frequencies {xi} is

Lbin({xi}|l) =
∏

i

l!

xi!(l − xi)!
θxi

i (1 − θi)
l−xi for xi ∈ {0, 1, . . . , l}. (2)

Figure 1 shows the combined histogram plot of frequency values of all words
over all documents, in addition to the maximum likelihood fit of a binomial
model of the data. In all cases, the binomial model underestimates the chance
of events somewhat far from the mean. It is too “light-tailed.” These graphs
are somewhat deceiving, since part of the heavy-tailed-ness is due to document
length variation. However, it appears that we may find benefit in a model that
assigns probability mass further from the mean or mode—a so-called “heavy-
tailed” distribution. We introduce such a model in the next section.

2 The Log-Log Model

Ignoring the normalization constant (which does not strongly affect the shape
of the distribution), the Unigram/Binomial has an exponential dependence be-
tween frequency and probability density—probability falls off quickly as we move
away from the mode. Here, we introduce a higher-variance model that assigns
greater probability away from the mode. Specifically, we consider a distribution
with a polynomial relationship between frequency values and probability mass.
In its simplest form, the distribution we consider is

P (x) ∝ (x + b)a, (3)

where x is the frequency value, and b and a are parameters of the distribution.
We call b the “bias” and a the “axponent.” This makes sense as a distribution
if b > 0 (since x ∈ {0, 1, 2, . . .}). To begin, we allow the distribution to assign
mass to all values x ≥ 0. Hence, we must have a < −1 in order that P has a
finite normalizer. Later we discuss conditioning the distribution on document
(as is done with the Unigram/Binomial) so that the normalization constant
is finite for any value of a. We call this the “log-log” distribution, because,
unlike the Unigram, which shows a linear relation between frequency and log-
probability, our new distribution shows a logarithmic relation between frequency
and log-probability.

We introduce a full form of the log-log model, then proceed to provide graphs
displaying the fit of the log-log model to empirical data. To begin, we use one
axponent parameter per word and a single bias parameter as a global scaling
factor. Later, we discuss variations on the model. Given axponent parameters

2



0 5 10 15 20
10−5

10−4

10−3

10−2

10−1

100

Word Frequency

R
at

e 
of

 O
cc

ur
re

nc
e

0 5 10 15 20
10−50

10−40

10−30

10−20

10−10

100

Word Frequency

R
at

e 
of

 O
cc

ur
re

nc
e

Figure 1: Shown are plots of (left) the empirical frequency distribution for all
words, and (right) the corresponding maximum likelihood binomial model. The
model highly underestimates large frequency values.

0 20 40 60 80 100
10−3

10−2

10−1

Word Frequency

R
at

e 
of

 O
cc

ur
re

nc
e

0 50 100
10−50

10−40

10−30

10−20

10−10

100

Word Frequency

R
at

e 
of

 O
cc

ur
re

nc
e

Figure 2: Shown are plots of (left) the empirical frequency distribution for the
word “the,” and (right) the corresponding maximum likelihood binomial model.
As is to be expected of an exponential model, the model is too peaked, under-
estimating frequency rates not extremely close to the mean (which is between
16 and 17 occurrences for an average length document).

0 5 10 15
10−4

10−3

10−2

10−1

100

Word Frequency

R
at

e 
of

 O
cc

ur
re

nc
e

0 5 10 15
10−25

10−20

10−15

10−10

10−5

100

Word Frequency

R
at

e 
of

 O
cc

ur
re

nc
e

Figure 3: Shown are plots of (left) the empirical frequency distribution for eight
words that occur exactly 30 times in the data, and (right) the corresponding
maximum likelihood binomial model. The model greatly underestimates the
chance of observing high frequency values.

3



{ai}, and bias parameter b, the log-log model assigns the following probability
to the set of word frequencies {xij},

Plog({xij}) =
∏

i,j

(xij + b)ai

∑

∞

x=0(x + b)ai
. (4)

The normalization constant, Z(a, b) =
∑

∞

x=0(x + b)a, is not generally feasible
to compute exactly. Note that Z(−a, 1) = ζ(a) is known as the Riemann Zeta
Function. We can compute an excellent approximation to Z using partial sums.
Let Sn =

∑n
x=0(x + b)a. We choose some large value, v, and construct a

polynomial kth degree fit of f(x) = S1/x for x ∈ { 1
v , 1

v−1 , . . . , 1
v−k , and use the

value of the fitted function at x = 0 as our approximation for Z. P may not
be a distribution if a ≥ −1 or b ≤ 0. Additionally, the expectation of P is not
finite if a ≥ −2.

Next, we consider whether this log-log model is an improvement over the
Unigram. First, we look at overall fit to three different data sets. Then, we look
at what sorts of words each model fits best.

2.1 Data

Here we describe the data sets that we will use for evaluating our model(s).
The Restaurant data is a collection of 132 threads from a local-area restau-

rant discussion bulletin board containing 615 messages. We pre-process the
Restaurant data in preparation for the task of named-entity extraction. Thus,
many non-words (such as punctuation) are tokenized.

The WebKB data is a popular text classification data set. It is a collection
of web pages from computer science departments. We use the recommended
pre-processing, which removes headers and HTML, treats digits specially, and
does not use a “stop list.” We also bypass documents empty documents and
documents with only a single word. We avoid the “other” category, which is a
truly miscellaneous collection of pages1; we use the other universities for training
since the four universities collection is extremely class-skewed and relatively
small once the “other” category is removed.

The 20 Newsgroups data is also a popular text classification data set. It
is a collection of newsgroup postings from 20 varied newsgroups. We use a
collection sorted by date so that our training and test sets are separated in
time. This collection also has duplicate postings removed. For processing, we
remove headers, bypass empty posts and those with uuencoded blocks, and do
not use a “stop list.”

2.2 Overall Fit

Here we look at how the Log-Log model fits actual term frequency data and
how it compares to the Unigram and Binomial. Table 1 gives information on

1When we tried including the “other” category, we found that the Log-Log model fit
extremely well (compared to the Unigram). We found that this was due to the odd mixture
of pages in the “other” category and not so much because it was modeling something valuable

4



Restaurant WebKB 20 News
Log-Log 2.8976 3.6154 3.7822
Unigram 2.7340 3.8283 3.7348

Binomial 2.7483 3.8516 3.7567

Table 1: Shown are average, per-word encoding length (in bits) of three data
sets using three different term frequency models. The log-log model gives the
smallest encoding (best fit) for both WebKB and 20 Newsgroups. The Unigram
gives the smallest encoding for the Restaurant data. The Binomial consistently
requires a slightly larger encoding that the Unigram.

fit. We trained each model on term frequency data for three different data sets,
Restaurant, WebKB and 20 Newsgroups. For WebKB and 20 Newsgroups, the
documents are organized into different classes2. To fit these data, we train the
model once for each class of documents, calculate a total encoding length (or
negative log-likelihood) for each class, sum the class-lengths, then divide by the
total number of word occurrences in the data to achieve an average per-word
encoding length.

The Log-Log model provides the better fit (smallest encoding length) for
WebKB. Compared to Unigram, the Log-Log model provides the better fit for
5 of the 6 WebKB classes (“department” is the lone exception). The Unigram
provies the better fit for both 20 Newsgroups and the Restaurant data; the
Unigram provides the better fit for 14 of the 20 categories (5 newsgroups are
better fit by Log-Log, the models fit talk.politics.mideast equally well). The fact
that Unigram provides the best fit on the Restaurant data may be somewhat
affected by the fact that our pre-processing includes punctuation as tokens.

Considering that our Log-Log model is so different from the Unigram, is
document-length unaware, and has only one additional parameter, the Log-Log
model seems to provide a reasonable overall fit. However, it is not compelling
as a term frequency model. In the next section, we consider how well the model
fits the frequency distributions of individual words.

2.3 Per-Word Fit

Here we present lists of words/tokens that had the largest difference in model fit
between the Binomial3 and Log-Log models. Whereas in the last section, we fit
one set of parameters for each class (for WebKB and 20 News), here we fit one set
of parameters for the entire data set. Thus, the model has no information about
class labels. We present valuses which are difference in encoding length between
the two models. We also calculate for WebKB and 20 News, for each word, the

2We train one set of parameters per class to avoid any advantage the Log-Log model might
gain from mixing data from different topics.

3We use the Binomial in place of the Unigram because we cannot easily look at the fit for
a specific word in the Unigram model.

5



Token Difference
. 341.5

the 278.9
and 237.6
a 237.0
, 221.0
i 204.7
of 191.4
to 170.3
in 140.4

but 137.1

Token Difference
sichuan 135.3

fish 85.1
speed 65.9
buffet 60.2

... 56.8
lobster 49.8
tacos 46.2
sour 42.7
greek 41.4
sauce 40.8

Table 2: Shown are (left) the 10 tokens with the best fit to the Binomial model,
and (right) the 10 tokens with the best fit to the Log-Log model. Differences
are in terms of bits of total encoding length on the Restaurant data.

mutual information (MI) between the label and the word4. We observe that the
Binomial tends to provide better fit for uninformative or “English” words, such
as “the,” “a” and “and.” We find that the Log-Log model provides the best fit
for topic-oriented words. Also, many words with high mutual information with
the class label are fit well by the Log-Log model. These observations suggest
that this sort of difference in model fit may be a good way to find words that
are good for classification (i.e. feature selection).

Table 2 gives the tokens in the Restaurant data with the largest differ-
ences in model fit. The tokens with (comparatively) the best Binomial fit are
punctuation and “stop list” words (words that provide structure for the En-
glish language, but relate little to content). The tokens with the best Log-Log
fit include words that appear in restaurant names (“sichuan,” “fish,” “speed,”
“buffet”) and words that refer to a type of food or describe food (“lobster,”
“tacos,” “sour,” “greek,” “sauce”). These are all topic-oriented words that are
highly informative about the topic of a discussion. The lone exception, the elip-
sis, is a stylistic convention that is used by a subset of authors on the board. It
would be a valuable marker for attempting to identify authorship.

Table 3 gives the words in the WebKB data with the largest differences in
model fit. Again we see “English” words providing the best fit for the Unigram
model. There appears to be some correlation with the classification label, but
it is unlikely that any of it would generalize to unseen data. In the top 10 best
fit words for the Log-Log model, we see three words/tokens with relatively large
MI values. “Time” is not the word time, but rather any sequence of characters
that specify a time of day (e.g. 5:29, or 12:00). As one might expect, these are
extremely common on course pages (a time is found on 58% of course pages;
the next highest rate is 18% for department pages). The word “my” is very
common on student, staff and faculty pages, and less common on other pages.

4When calculating mutual information, we only use word presence/absence information
and ignore frequency information.

6



Token Diff MI
of 4730.0 0.0180

and 4085.0 0.0254
for 3155.8 0.0157
in 3154.9 0.0062
to 2503.9 0.0119
on 2334.9 0.0060

with 1290.6 0.0114
an 1230.9 0.0125
is 1228.0 0.0204

from 1153.9 0.0061

Token Diff MI
OneDigit 7938.8 0.0703
TwoDigit 4228.1 0.0298

Time 3729.3 0.1325
nbsp 3135.7 0.0003
my 2851.8 0.2214

Digits 2764.1 0.0238
homework 2479.7 0.1511
parallel 2167.7 0.0235

eecs 2091.1 0.0068
postscript 2053.1 0.0078

Table 3: Shown are (left) the 10 tokens with the best fit to the Binomial model,
and (right) the 10 tokens with the best fit to the Log-Log model. Differences are
in terms of bits of total encoding length for the WebKB data. Each table also
include a column giving mutual information (MI) with the classification label.

The word “homework” is almost exclusively found on course pages. Digits are
commonly used to refer to courses, and so are more common on course pages
than other pages. Again, we see that words that are better fit by the Log-Log
distribution are related to topics in the data.

Table 4 gives the words in the 20 Newsgroups data with the largest differences
in model fit. Again we see “English” words providing the best fit for the Unigram
model. Although the mutual information values are not trivial, these words all
appear regularly across all classes and would be of minimal use for discrimination
purposes. In contrast, the words that best fit the Log-Log modeltend to be
highly indicative of the topic. The word “he” is rare in technical newsgroups
(such as comp.os.ms-windows.misc and sci.electronics), but very common in
religious (where it is used to refer to God), political and sports newsgroups
(where it refers to politicians and ballplayers). The word “god” is very common
in religion-related newsgroups (such as alt.atheism and soc.religion.christian),
and rare in other newsgroups; “file” is common in computer-related newsgroups;
“scsi” refers to a type of hard drive (and the underlying protocol) and is common
in the hardware and for sale newsgroups; “we” is found in most newsgroups,
but is especially common in the religion-related newsgroups. Again, we see that
words that are better fit by the Log-Log distribution are related to topics in the
data.

Although the Log-Log model does not clearly provide a better overall fit to
textual data, it does provide a better fit for informative, or topic-centric words.
By comparing to Binomial fit, we can identify words that are associated with
topics that are discussed in the text. Thus, we might be able to use the Log-Log
model as part of a feature selection algorithm. Or, we might be able to use it
for unsupervised, or semi-supervised discrimination methods as it appears to be
able to identify informative words without class label information.

7



Token Diff MI
to 16907.6 0.0190
in 15773.8 0.0258
the 14948.6 0.0222
and 14568.6 0.0143
of 11890.8 0.0394
for 9333.3 0.0048
is 9184.9 0.0255
it 7899.1 0.0240

this 7616.9 0.0218
that 7563.9 0.0549

Token Diff MI
he 6768.1 0.0772
db 5421.0 0.0019
god 4999.5 0.1099
file 4367.5 0.0374
scsi 4106.9 0.0206
we 3216.8 0.0609
key 3204.5 0.0617

space 3199.9 0.0553
drive 3161.3 0.0352

windows 3086.9 0.0958

Table 4: Shown are (left) the 10 tokens with the best fit to the Binomial model,
and (right) the 10 tokens with the best fit to the Log-Log model. Differences are
in terms of bits of total encoding length for the 20 Newsgroups data. Each table
also include a column giving mutual information (MI) with the classification
label.

3 Variations on the Log-Log Model

Recall that we introduced the Log-Log model so that the probability mass as-
sociated with a certain term frequency value is proportional to a polynomial
function of the term frequency,

P (x) ∝ (x + b)a. (5)

We chose to make a (what we call the “axponent”) the per-word parameter and
to use a single b (the “bias”) to scale the distribution. In this section, we discuss
three extensions. The first, an almost trivial extension, is to make the model
length-conditional and only normalize over frequency values less than or equal
to the document length. For the second extension, we make the model truly
document-length aware and consider the problem of modeling frequency rates
rather than frequency counts. Finally, we discuss the alternate parameterization
where the bias is the per-word parameter and the axponent is the single scaling
parameter.

3.1 The Length-Conditional Normalizer

An obvious improvement on the Log-Log model as we have discussed it so
far is simply to limit the normalization to the length of the document. This
eliminates the possibility that the distribution is improper if a ≤ 1, but makes
the normalization constant conditional on the document. Let lj =

∑

i xij be
the length of document j. Then, recalling Equation 4, the new normalization
constant is Z(a, b, l) =

∑l
x=0(x + b)a and the new distribution is P ({xij}) =

∏

i,j(xij + b)ai/Z(ai, b, lj). We find that this trick improves model fit/decreases
encoding length somewhat, but it also makes the gradient/objective code more
computationally intensive.

8



3.2 The Log-Log Frequency Rate Model

Whereas normalizing only over feasible frequency values saves some probability
mass, it does little to make the model better account for documents of different
length. Even with a length-conditional normalizer, the model still assigns very
similar probability masses to small frequency values whether the document is 100
words long or 1000. Here, we consider a different perspective, that of modeling
frequency rates rather than frequency counts. Now, the x in our model is a
rate value ∈ [0, 1] instead of a count ∈ {0, 1, 2, . . . , l} (where l is the length of
the document). But, although rate values are not integer, they are discrete;
possible values are {0, 1/l, 2/l, . . . , 1}. We could follow our earlier development,
simply using P (x/l) ∝ (x/l+b)a as our unnormalized distribution. However, by
instead using area under the curve to assign probability mass, we can make our
normalization constant very easy to manage. Let x be a term frequency value;
let l be the length of the document; let a and b be parameters of the distribution.
Then, we assign probability mass to x proportional to the integral from x/l to
(x + 1)/ of the function f(r) = (r + b)a. Our normalization constant is simply
the integral from 0 to (l + 1)/l. Using the same notation and parameterization
as before, our Log-Log rate model is

P

(

xij

lj

)

=
1

Z(ai, b, lj)

∫

xij+1

lj

xij

lj

(r + b)aidr, (6)

where Z(ai, b, lj) =
∫ (lj+1)/lj
0

(r + b)aidr. While retaining the desired “heavy-
tail,” this model also scales nicely with length—the part of the curve used to
determine probability mass depends on the rate, not the raw frequency value.
However, in limited experimentation, our Log-Log rate model does not seem to
produce substantially better fit than our basic Log-Log model.

3.3 An Alternate Parameterization

Finally, we discuss an alternate parameterization for the Log-Log model. We
have so far assumed the use of one axponent per-word and a single bias param-
eter which acts as a scaling factor. Here, we reverse the roles, using one bias
parameter per-word and a single axponent parameter. Using the set-up from
Equation 4, our per-word bias model is

P (x) =
(x + bi)

a

∑

∞

x=0(x + bi)a
. (7)

We note that this change of parameters is also easily achieved for the rate model.
A disadvantage of this parameterization is that it is highly non-convex—each
bias parameter essentially adds an additional non-convexity. Whereas the origi-
nal parameterization can be solved quickly via approximate second-order meth-
ods (such as pre-conditioned Conjugate Gradients), such methods do not seem
to provide any advantage over first-order methods (such as plain Conjugate

9



Gradients). However, the bias-per-word parameterization yields somewhat im-
proved fit in a test on the Restaurant data (though still behind the Unigram).
We were not able to run tests on the other data sets—optimization is very slow.

4 On Model Fit and Classification Accuracy

We have established that the Log-Log model may be useful for identifying infor-
mative, or topic-related terms. In this section, we explore whether this improved
fit on informative words translates into an improved ability to perform discrim-
ination tasks.

4.1 Classification

We conducted classification experiments on the WebKB data, training one set
of parameters for each class, then for test data, assigning the label of the cor-
responding model that provides the best fit. What we find is that the Log-Log
model performs extremely poorly. For each model, we smooth by assuming that
each model contains an additional single document with each word occurring
once. This is the standard smoothing technique for the Unigram and seems to
be a reasonable choice for the Log-Log model. The Unigram is effective, mis-
classifying only 22.1% of the test documents when we use the entire vocabulary.
Performance is somewhat worse, 24.5% error, when we select 1000 features with
the highest mutual information on the training set. We also tested feature se-
lection using the difference in Binomial encoding length and Log-Log encoding
length (as suggested in an earlier section). We find that this method of se-
lecting features is not as effective as mutual information, achieving 27.3% error
when we select the 1000 features with the largest difference. However, unlike
mutual information, this methods uses no label information. For comparison,
selected the bottom 1000 features according to this differences and found 39.2%
error—the best-fit Log-Log words are better for classification than the best-fit
Binomial words. Note that always selecting the most frequent class in the test
set (“student”) achieves 48.9% error. When we try to use the Log-Log model for
classification, we find that performance is exceedingly poor, as it nearly always
selects the “department” class. We note that the bias parameter, b, selected
during optimization for the “department” model was the largest of all the class
models; we posit that classification may be highly sensitive to this bias value.
However, when we fix b = 1 for all class models, we again find that perfor-
mance is dismal—this time the Log-Log classifier always selects the “student”
model, achieving 48.9% error. We note that the “department” model selected
the lowest minimum axponent value; we posit that this may be the reason that
it always selects the “department” class.

Though maximum-likelihood training of parameters for the Log-Log model
does not achieve effective classification, we find good performance by training
the parameters of the model discriminatively. The discriminative version of the
Unigram model is a linear classifier where the features are the word counts.

10



Regularization Error
Parameter Unigram Log-Log

104 20.0% 19.9%
103 16.1% 13.9%
102 17.0% 13.4%

101 18.7% 15.4%
100 19.1% 16.5%

Table 5: Shown are classification errors on the WebKB data set using a linear,
discriminative classifier. The left column gives the value of the regularization
parameter used for the classifier. The middle column gives error when frequency
values are used as features. The right column gives error when frequency values
are first transformed via f(x) = log(x + 1).

Regularization Error
Parameter Unigram Log-Log

104 34.1% 33.4%
103 28.1% 28.3%
102 27.4% 25.7%

101 28.6% 26.1%
100 29.3% 27.4%

Table 6: Shown are classification errors on the 20 Newsgroups data set using
a linear, discriminative classifier. The left column gives the value of the reg-
ularization parameter used for the classifier. The middle column gives error
when frequency values are used as features. The right column gives error when
frequency values are first transformed via f(x) = log(x + 1).

Maximum-likelihood training of the Unigram model selects weights equal to the
logarithm of the empirical frequency rate. However, these are not generally the
best settings for classification. Similarly for the Log-Log model, those param-
eters trained via maximum-likelihood (or to maximize fit of the data), are not
necessarily good for classification. The discriminative version of the Log-Log
model scores documents according to ai log(xij + b), summed over words in
the vocabulary. For simplicity, we set b = 1 and have the classifier learn the
{ai}. This is equivalent to simply transforming the term frequency values via
f(x) = log(x + 1) and learning linear weights.

We conducted similar experiments on the 20 Newsgroups data set, comparing
discriminative version of the Unigram and Log-Log models. Again, we used a
simple translation of the Log-Log model—training linear weights on data that
had been transformed via f(x) = log(x + 1). As with WebKB, we found better
results using the transformed data. Table 6 gives the results. Only for one
regularization parameter did the Unigram-based model outperform. And, the
Log-Log-based model achived by far the lowest error.

When we trained the Unigram and Log-Log models to maximize the like-

11



F1 breakeven
Baseline 55.04%
Log-Log 56.27%

IDF*Log-Log 58.09%

Table 7: Shown are F1-breakeven values for three different sets of features.
“Baseline” includes only traditional NEE features. “Log-Log” adds the Log-
Log score. “IDF*Log-Log” adds a feature which is the product of the IDF score
and the Log-Log score. Larger values are better.

lihood (or fit) of the data, we found that the Unigram achieved reasonable
classification performance, but the Log-Log model performed miserably. How-
ever, when we used a discriminative objective that minimized a bound on the
classification error, we found that both models achieved good rates of error, and
the Log-Log model outperformed the Unigram, with lower error for all values
of the regularization parameter.

4.2 Named Entity Detection

We also consider the use of the Log-Log model in a task of named entity de-
tection. A first step in extracting information from a text collection is the
identification of named entities. For the restaurant discussion board data we
have collected, it is valuable to be able to identify restaurant names in order
to extract further information about restaurants (such as reviews, dishes, the
name of the chef, location, etc.). As our Log-Log model provides good fit to
topic-oriented terms, and restaurants are the main item of discussion in this col-
lection, we posit that fit of the Log-Log model (in comparison to the Ungram)
may be a useful feature in identifying restaurant names.

We use the same setup as in [1], using the difference between Log-Log model
fit and Unigram fit as a feature available to the classifier; we call this difference
in model fit the Log-Log score. We also consider a feature which is the product
between the inverse document frequency (IDF) score and the Log-Log score5.
Table 7 gives the results. The Log-Log score appears to be valuable for helping
to extract restaurant names, as F1-breakeven is larger when the feature is in-
cluded. However, a nonparametric test does not indicate that the improvement
is significant. We see further improvement when the product between IDF and
the Log-Log score is included. However, the improvement is somewhat less than
what we saw when we used a product of IDF and the Mixture score as a fea-
ture for named entity extraction. While the Log-Log model provides good fit
for topic-oriented words, it does not seem to be any more useful for identifying
informative words than a mixture of Unigrams.

5For the “IDF*Log-Log” experiment, we also include features for the IDF score, the Log-
Log score, the square of the IDF score and the square of the Log-Log score.

12



5 Conclusion

We have introduced the Log-Log model as a “heavy-tailed” alternative term
frequency model to the Unigram. We found that it provided overall that was no
better than that of the Unigram. The Log-Log was very effective at modeling
topic-oriented, or informative words. But, in classification and named-entity
extraction experiments, we were not able to make a compelling case for its use.

References

[1] J. D. M. Rennie and T. Jaakkola. Using term informativeness for named en-
tity detection. In Proceedings of the 28th Annual International ACM SIGIR

Conference on Research and Development in Information Retrieval, 2005.

13


