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1 The Poisson

The most traditional term frequency model is the Poisson,

pP (x) =
1
eµ

µx

x!
, x = 0, 1, 2, . . . , (1)

where x is the frequency. It is a discrete distribution; eµ =
∑∞

x=0
µx

x! is the
normalization constant. The mean is µ:

E[x] =
∞∑

x=0

xµx

x!eµ
= µ

∞∑
x=1

µx−1

(x− 1)!eµ
= µ

∞∑
x=0

µx

x!eµ
= µ. (2)

The second moment is µ2 + µ:

E[x2] =
∞∑

x=0

x2p(x) = µ

∞∑
x=0

(x + 1)µx

eµx!
= µ(µ + 1). (3)

Thus, the variance, E[x2]− µ2, is also µ.
It is well-known that the Poisson serves as a poor model of term occurrence.

Figure 1 shows the empirical term distribution from a collection of threads on a
restaurant discussion board, and the Poisson distribution with mean parameter
set to the empirical mean. The Poisson clearly underestimates the probability
of a word occurring repeatedly in a document. In the set of threads, there are
17 cases of a word occurring exactly 20 times; this corresponds to a empirical
rate of 2.2× 10−5. However, the Poisson predicts an empirical rate of less than
10−40—the chance of even seeing a single word occur 20 times is extremely
small. Church [1] discusses the flaws of the Poisson and suggests alternatives
such as the negative binomial [4] and Katz’ mixture model [3].

2 The Binomial

The Binomial might be thought of as a document-length-aware version of the
Poisson. While the Poisson puts non-zero probability on all non-negative in-
tegers, the Binomial stops at the length of the documents. However, since
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Figure 1: The left plot shows the empirical distribution of frequencies from a
collection of postings to a restaurant discussion board. The right plot shows
the Poisson distribution with mean parameter set to the mean empirical word
frequency. Note the different ranges for the log-scale y-axes.

for most words, the expected number of occurrences is a fraction of document
length, the amount of density the Poisson applies to infeasiable frequency values
is miniscule. In practice, the Binomial and Poisson share much in common.

The Binomial distribution is

pB(x) =
n!

x!(n− x)!
θx(1− θ)n−x, (4)

where θ is the mean rate of occurrence and n is the document length. Note that
for n large and x small,

µx

x!
≈ n!

x!(n− x)!
θx (5)

(since n!
(n−x)! ≈ nx). The mean of the Binomial is µ = nθ,

E[x] =
n∑

x=0

x
n!

x!(n− x)!
θx(1− θ)n−x (6)

= nθ
n∑

x=1

(n− 1)!
(x− 1)!(n− x)!

θx−1(1− θ)n−x (7)

= nθ. (8)

Similarly, the second moment is nθ − nθ2 + n2θ2,

E[x] =
n∑

x=0

x2 n!
x!(n− x)!

θx(1− θ)n−x (9)

= nθ
n−1∑
x=0

(x + 1)
(n− 1)!

x!(n− 1− x)!
θx(1− θ)n−1−x (10)

= nθ(n− 1)θ + nθ. (11)
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Figure 2: The left plot shows the data empirical frequency distribution (repeat).
The right plot shows (x + 0.2)−2.4 = e−2.4 log(x+0.2). Note the log-scale y-axis.

Thus, the variance is nθ(1−θ). Note that when θ is small, the variance is nearly
the same as the Poisson variance.

As one might expect, if we let n → ∞, and θ → 0 in such a way that
nθ = µ remains constant, then the Poisson Distribution tends to the Binomial
Distribution. See [2] (§4.3) for the proof.

In practice, the difference between the Poisson and Binomial is small. The
Binomial models word frequency distributions as poorly as does the Poisson.

3 A Log-Log Model of Word Frequency

Note that the empirical word frequency plot has a shape similar to that of of an
inverted log function, − log(x). A bit of fiddling with constants gives us a close
visual match to the empirical distribution. In figure 2, we plot e−2.4 log(x+0.2).
Like the empirical distribution, this distribution gives significant weight to large
values of word frequency. It appears to be an excellent fit. However, there are
two major issues we have yet to address: (1) will this work as a good model for
individual words with varying rates of frequency? and (2) how do we account
for changes in document length?

4 Individual Word Frequency Distributions

We have seen that our log-log model of word frequency can model the frequency
distribution for all words over an entire collection of text. But, can it effectively
model the word frequency distribution of a single word? In particular, what
about a word that is extremely frequent. One could imagine that an extremely
common word, such as “the” might have a higher rate of single occurrences than
zero occurrences. Figure 3 gives the empirical frequency distribution of “the”
in a collection of restaurant discussion board postings. In fact, there appears to
be a gradual decrease in rate of occurrence for increasing word frequency; there
is no clear “peak,” but it is clear that lower word frequencies have a higher rate
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Figure 3: The left plot shows the empirical frequency distribution of “the” in
our collection of restaurant discussion board postings. The right plot shows the
empirical frequency distribution of eight words that each occur a total of 30
times in the posting collection. Both distributions can be modeled effectively
by the log-log word frequency model.

of occurrence. Ignoring the clear randomness in the data, it should be clear to
the reader that appropriate selection of constants would lead to a good fit of
the log-log model to this data.

What about less frequent words? Figure 3 also gives the empirical distri-
bution for the eight words1that each occur exactly 30 times in the data. This
distribution, though less “smooth,” shares much similarity with the overall em-
pirical distribution. Again, appropriate setting of constants would lead to a
log-log distribution that would fit the data well.

5 Document Length

A lingering issue is: how does the model account for different document lengths?
Figure 4 shows empirical word frequency distributions for a collection of short
(less than 200 words) threads, and for a collection of long (500 words or more)
threads. Possibly most striking is the fact that the plots are not so different. A
close inspection reveals that the the “long” plot has higher rates of occurrence for
all word frequencies of 1 or more. But, the overall shape of the two distributions
is very similar. Whereas one might expect that a different parameterization
would it appears that a slight change in parameter values would be sufficient.
Here we suggest that the necessary modification might be to change the constant
in the exponent in order to account for different document length. I.e. the −2.4
from the plot in figure 2 would become smaller (more negative) for shorter
documents, larger (more positive) for larger documents. We explore this in
more detail in a later writeup.

1For the curious, those eight words are “things,” “buffet,” “indian,” “stuff,” “meal,” “bad,”
“grilled,” and “thought.”
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Figure 4: Both plots show empirical word frequency distributions from the col-
lection of restaurant discussion board postings. The left plot represents statistics
from (short) threads with less than 200 words. The right plot is compiled from
(long) threads with 500 or more words. As one would expect, for frequency
values greater than 1, word frequency empirical rate of occurrence is higher for
the long threads.

6 Appendix

A useful identity, taken from [2] (§2.1).(
n

r − 1

)
+

(
n

r

)
= n!

(
1

(r − 1)!(n + 1− r)!
+

1
r!(n− r)!

)
(12)

= n!
(

r

r!(n + 1− r)!
+

n + 1− r

r!(n + 1− r)!

)
(13)

=
(

n + 1
r

)
(14)
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