
Optimization of a Locally Convex Objective

on Convex Regions

Jason D. M. Rennie
jrennie@csail.mit.edu

March 11, 2005

Abstract

We consider the problem of maximizing an objective that is locally
convex on a set of convex regions. That is, within each convex region,
the objective is convex, but across regions, the objective may not be con-
vex. We cannot say anything about how the objective behaves across
regions. We formulate the problem and give an algorithm for finding a
local maximum of the objective.

1 Definitions

• Let W ∈ Rn × Rm × Rl × Rd be indexed by examples, then classes, then
components. W is assumed fixed and known.

• Let ~y = {y1, . . . , yn}, yi ∈ {1, . . . ,m}, be the class labels of the examples.

• Let ~x ∈ Rd be the parameter vector.

• Let Zi(~x) =
∑m

j=1 maxk∈{1,...,l} exp
(
WT

ijk~x
)
. Our objective is

J(~x) =
n∏

i=1

1
Zi(~x)

exp
(

max
k∈{1,...,l}

WT
iyik~x

)
(1)

log J(~x) =
n∑

i=1

max
k∈{1,...,l}

WT
iyik~x− log Zi(~x) (2)

• Let R ∈ {1, . . . , l}n×m specify a local objective. Define P (~x; i, j, R) =
1

Zi(~x;R) exp
(
WT

ijRij
~x
)
, where Zi(~x;R) =

∑m
j=1 exp

(
WT

ijRij
~x
)
. Then, our

local objective is

JR(~x) =
∏

i

P (~x; i, yi, R). (3)

1

Rij is the active component for example i, label j. We abuse notation
by also using R to define a region. The region R is defined as follows:
R = {~x|JR(~x) = J(~x)}. Note that a point may belong to multiple regions.

• Let fR(α; ~x, ~d) = log JR(~x + ~dα).

∂fR

∂α
=

n∑
i=1

~dT WiyiRiyi
−

m∑
j=1

dT WijRij
P (~x; i, j, R)

 (4)

To find a local minimum, we choose a direction for which the objective is
non-decreasing, and follow that direction to a local maximum or a change in
the set of active regions.

2 Function Definitions

Here we define some useful subroutines.

• LineSearch(R, ~d, ~x, α0, α1, ε): Assume α0 < α1. Assume ~x+ ~d[α0, α1] ∈ R.
Let α2 = (α0 + α1)/2. Find the maximum of JR along the interval ~x +
~d[α0, α1] using bisection search. Define f(α) = JR(~x+α~d). If α1−α0 < ε

or ∂fR

∂α = 0, Return α2. If ∂fR

∂α > 0, Return LineSearch(R, ~d, ~x, α2, α1, s, ε).
If ∂fR

∂α < 0, Return LineSearch(R, ~d, ~x, α0, α2, s, ε).

• Function NextConstraint(R, ~d, ~x): Finds the smallest α ≥ 0 such that
~x + α~d 6∈ R. For all i, j and k 6= Rij , such that ~dT Wijk > dT WijRij

, let

α∗
ijk = −

~xT (WijRij −Wijk)
~dT (WijRij

−Wijk)
. (5)

Return minα∗
ijk.

• Function DirectionSearch(~x): Determine a direction in which to search.
Let R = ActiveRegions(~x). For i = {1, . . . , |R|}, let ~di = ∂fRi

∂α , let αi =
NextConstraint(R, ~di, ~x). If αi > 0 for some i, then Return arg max~d∈{d1,...,d|R|} JR(αi

~d).
Else, project one of the gradients onto the space of the active regions. Let
~d be one of the gradients. Consider the case that there are two active re-
gions, R(1) and R(2). Also, assume that R

(1)
ij = R

(2)
ij ∀i, j except for i′, j′.

Let r1 = R
(1)
i′j′ and r2 = R

(1)
i′j′ . Hence, the space of the two active regions

is (at least locally) defined by Wi′j′r1 = Wi′j′r2 . Let ~w1 = Wi′j′r1 and
~w2 = Wi′j′r2 . Then, we want to find the unit-length vector, ~x, that maxi-
mizes ~xT ~d such that ~xT ~w1 = ~xT ~w2. This is simply ~d minus the projection
of ~d onto (~w1 − ~w2). I.e.

~x = ~d−

(
~dT (~w1 − ~w2)
‖~w1 − ~w2‖

)T

(~w1 − ~w2) (6)

2

For more than two regions, we simply subtract out projections of a set of
pairs.

• Function ActiveRegions(~x): Return the set of regions for ~x. For each i, j,
find maxk ~xT Wijk.

Need additional constraint (≤ constraint according to region boundaries).
Otherwise, there is no max/min. But, I don’t know the direction... And, I can’t
add inequality constraints that are not independent of the equality constraints.

We thank John Barnett for valuable comments and discussion.

3

