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1 The Log-Log Model Revisited

Earlier [1], we defined our term frequency distribution as

P (x) =
(x + b)a

Z(a, b)
, (1)

for x ∈ {0, 1, 2, . . .}, where the normalization constant is Z(a, b) =
∑

∞

x=0(x+b)a.
Note that the noramlization constant is finite only when a < −1 and b > 0.
We also note that Z(−a, 1) = ζ(a) is the Riemann Zeta Function. Generally
speaking, we cannot compute the normalization constant exactly. However, an
excellent approximation can be achieved using partial sums. Let Sn =

∑n
x=0(x+

b)a. We fit the function f(x) = S1/x for x ∈ {1/1, 1/2, . . . , 1/n, . . .}, and use
the fit at x = 0 as our approximation for Z.

As noted, P may not be a distribution if a ≥ −1 or b ≤ 0. Additionally, the
expectation of P is not finite if a ≥ −2. Without constraints or reparameteri-
zation, our optimization routine may try to evaluate such out-of-bounds values.
We choose to reparameterize so that any finite values of the parameters yield a
distribution with finite expectation. We reparameterize b as eβ and a as −eα−2.
Thus, we have P (x) = (x + eβ)−eα

−2/Z(α, β) and Z(α, β) =
∑

x(x + eβ)−eα
−2.

Now, consider the problem of fitting the distribution given a set of docu-
ments. Let the distribution for word i be Pi(x) ∝ (x + eβi)−eα

−2. We learn a
separate βi for each word and a single α for the entire data set. Let xij be the
frequency of word i in document j. Let n be the number of documents; let d be
the vocabulary size. Then, the data negative log-likelihood is

J = − log P (D) =

d
∑

i=1

n
∑

j=1

(eα + 2) log(xij + eβi)+

d
∑

i=1

n log

(

∞
∑

x=0

(x + eβi)−eα
−2

)

. (2)
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We can use gradient-descent-type techniques to learn the parameters. Note that
when we are assessing the probability of frequencies in a given document, there
is no need for us to be concerned with document length. Our document likeli-
hood is a joint probability that implicitly includes the event of the documents
having certain lengths. It is computationally difficult to calculate the chance of
observing a document of a given length. However, we find no need to calculate
this probability. Note that for other models, such as the unigram/multinomial,
it is also computationally difficult to calculate this marginal probability.

2 Optimization

Here we discuss the task of learning parameters of our log-log term frequency
model. As mentioned earlier, we use gradient-descent-type techniques. In par-
ticular, we focus on techniques that require only objective and gradient infor-
mation. We have already discussed the objective (2) and the approximation
necessary to calculate the normalization constant. Here we calculate the gradi-
ent. Define P̂i as the empirical distribution of frequencies for word i. Recall that
n is the number of documents. The gradient takes the usual form, the difference
between the expectations of the estimated and empirical distributions.

Z =

∞
∑

x=0

(x + eβi)−eα
−2 =

∞
∑

x=0

exp
[

−(eα + 2) log(x + eβi)
]

(3)

∂Z

∂α
= −

∞
∑

x=0

(x + eβi)−eα
−2eα log(x + eβi) (4)

∂Z

∂βi
= −

∞
∑

x=0

(x + eβi)−eα
−2 (eα + 2)eβi

x + eβi
(5)

∂J

∂α
=
∑

i

∑

j

eα log(xij + eβi) − n
∑

i

∑

x(x + eβi)−eα
−2eα log(x + eβi)

∑

x′(x′ + eβi)−eα
−2

(6)

= neα
∑

i

(

EP̂i(x)[log(x + eβi)] − EPi(x)

[

log(x + eβi)
]

)

(7)

∂J

∂βi
=
∑

j

(eα + 2)eβi

xij + eβi
− n

∑

x(x + eβi)−eα
−2 (eα+2)eβi

x+eβi
∑

x′(x′ + eβi)−eα
−2

(8)

= n(eα + 2)

(

EP̂i(x)

[

eβi

x + eβi

]

− EPi(x)

[

eβi

x + eβi

])

(9)

Again, we must use approximations to compute these sums. We can use the
partial-sum/regression technique discussed earlier.
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3 A Length-Conditional Version

So far, we have described a distribution that is not conditioned on the length
of the docuemnt. However, it is common for models to condition on document
length. The unigram model is a prime example. So, here we describe a length-
conditioned version of the log-log term frequency model.

Conditioning on length involes only a minor change in the math. Instead of
summing to infinity for the normalization constant, we sum to the length of the
document. Since the log-log model is heavy-tailed, this might yield a non-trivial
improvement in data likelihood. We use parameters a and {bi} (avoiding the
messy reparameterizations); our data negative log-likelihood is

J =

d
∑

i=1

n
∑

j=1

log





lj
∑

x=0

(x + bi)
a



−

d
∑

i=1

n
∑

j=1

a log(xij + bi), (10)

where lj =
∑

i xij is the length of document j. Note that the normailization
term now depends on the document.

The partial derivatives are

∂J

∂a
=

d
∑

i=1

n
∑

j=1

∑lj
x=0(x + bi)

a log(x + bi)
∑lj

x=0(x + bi)a
−

d
∑

i=1

n
∑

j=1

log(xij + bi) (11)

=

d
∑

i=1

n
∑

j=1

EPij
[log(x + bi)] − EP̂ij

[log(x + bi)], (12)

∂J

∂bi
=

n
∑

j=1

∑lj
x=0(x + bi)

a a
x+bi

∑lj
x=0(x + bi)a

−
n
∑

j=1

a

xij + bi
(13)

=

n
∑

j=1

EPij

[

a

x + bi

]

− EP̂ij

[

a

x + bi

]

, (14)
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