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Abstract
We show how the regularization used for classification can be seen

from the MDL viewpoint as a Gaussian prior on weights. We con-
sider the problem of transmitting classification labels; we select as our
model class logistic regression with perfect precision where we spec-
ify a weight for each feature. This is unrealistic since the encoding
length of any such model is infinite, but if we use a Gaussian prior on
weights and ignore constant factors, we find that the encoding length
objective exactly matches that of logistic regression with an L2-norm
regularization penalty. Through this understanding, we see that the
tradeoff parameter is the variance of the Gaussian prior. It also de-
lineates steps for improved regularization—both decreased resolution
and feature selection could be used to decrease the encoding length.

1 The Problem

Let (x1, . . . , xn) be a set of examples. Let (y1, . . . , yn), yi ∈ {+1,−1}, be
a set of binary lables for the examples. The problem we address is that of
encoding the labels as efficiently as possible. The labels have little internal
structure of their own; we use the information in the examples to help predict
the labels. Compression is a natural way to judge the degree to which a
system has learned. In this case, compression judges the effectiveness of
using the examples to predict the labels. Note that to make use of the
examples, we must encode the mechanism for extracting information, so the
framework imposes a sort of natural regularization.

2 Encoding

To encode the labels, we estimate a conditional distribution using a linear
classifier. In one part, we encode the weights for the linear classifier and in
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the second part, we encode the labels, to the extent that they have not been
specified by the classifier. Define

p(yi = +1|xi; ~w) = g

(
l∑

k=0

xikwk

)
(1)

to be the conditional probability of label yi being positive given example xi.
g(z) = 1

1+e−z is the logistic function. xik is the value of the kth feature of
example i. wk is the weight for feature k. k = 0 is the special “bias” feature;
xi0 = 1 for all i. l is the number of non-bias features. Let zi =

∑
k xikwk.

Then, if we ignore the discrete practicality of coding, the encoding length
for label yi is

L(yi|xi; ~w) = − log g(yizi). (2)

All that remains to be encoded is the weights.
To encode the weights, we assume a Gaussian prior with mean zero and

variance σ2,

p(wk) =
1√

2πσ2
exp

(
−

w2
k

2σ2

)
. (3)

But this is a density, not a probability mass function as we require. However,
we are not concerned with absolute encoding lengths—relative encoding
lengths are sufficient since we are comparing between models in a restricted
class. Using this prior and treating it as a probability mass function, we get
a (reltaive) encoding length of

L(wk) = − log p(wk). (4)

Now, we can write down the total encoding length. The total encoding
length sums the encoding length for all labels and all weights. We do not
encode the “bias” weight. The total encoding length is

Ltot = −
∑

i

log g(yizi) +
l∑

k=1

(
1
2

log 2πσ2 +
w2

k

2σ2

)
. (5)

3 Regularized Logistic Regression

Logistic regression maximizes the (log-)likelihood of the labels, where the
likelihood of a label is as defined in equation 1. For more information on
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logistic regression, see [1]. We subtract a constant multiple of the the square
of the L2-norm to regularize the weights. This gives us an objective,

Jlr =
∑

i

log g(yizi)−
C

2

l∑
k=1

w2
k, (6)

that we would like to maximize.
To minimize the total encoding length as defined above, we can ignore

the 1
2 log 2πσ2 constant term. Hence, the encoding length objective that we

wish to minimize is

L′
tot = −

∑
i

log g(yizi) +
1

2σ2

l∑
k=1

w2
k. (7)

Reversing the sign and substituting C = 1
σ2 gives us the regularized logistic

regression objective.

4 Conclusion

It is clear from section 3 that the L2-norm regularizer used for logistic re-
gression (and other learning algorithms) is not arbitrary, but rather a direct
result of imposing a Gaussian prior on weights. We can also see that there is
much room for improvement. The L2-norm assumes unlimited precision and
does not encourage feature selection. We could improve the regularization
by restricting weight values to a discrete set and allowing the classifier to
select out features that are not useful. These two steps would bring us closer
to an encoding that is more efficient than the trivial one where each label is
encoded with a single bit. These are areas for future work.
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