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Abstract

‘We describe a hierarchical topic model. We assume that there are vari-
ous levels of specificity in a document collection. For example, a collection
of mailing list posts can be organized according to sentence, paragraph,
post and thread. We describe a model that encourages the largest changes
in topics to occur at the highest levels of the hierarchy (e.g. post, thread).

1 The Basic Model

We assume that there is hierarchical structure to the document collection. We
assume that there are a set of fundamental units which cannot be broken down
any further, such as sentences. We represent each sentence as a bag-of-words,
disgarding sequence information and simply storing its vector of word counts.
We form the matrix Y out of the sentence word count vectors (one vector per
row). We assume that each word count vector (row of Y) is generated by a
multinomial model. We store the multinomial natural parameters in another
matrix, X; each row of X contains the natural parameters for the corresponding
row of Y. X and Y are the same size. Note that entries of X are real values;
entries of Y are non-negative integers. Let X;; (Y;;) index the i*" row, j*™
column entry of X (Y'). The negative log-likelihood of the data is
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where g(Y') is a term that only depends on the data and is unaffected by changes
in parameter values.

2 The Hierarchy

The sentences are arranged in a hierarchy; there are ng = n sentences, which
make up the bottom or 0" level of the hierarchy. Each of the sentences has
a “parent,” a level-one node to which it is linked; there are n; < ng level-one



nodes. If there is a second level, then each level-one node has a parent, a level-
two node to which it is linked; there are ny < n; level-two nodes. The hierarchy
may have any number of levels. Let m + 1 be the number of “levels,” including
the sentence (0'") level. We assume that there is only one level-m node, which
we call the “root” node.

We define a “parent of” function, p, that returns the parent of each (non
level-m) node in the hierarchy!. Furthermore, we use superscript notation,
p”, to indicate recursive application of p. If ¢ is the index of a sentence, then
p(i), p?(i), and p3(i) return the indeices of its parent, grandparent, and great-
grandparent respectively, where the level-k nodes are indexed {1,2,...,my}
according to their order in the document collection. Note that all sentences
have the same level-m parent, p (i) = 1 Vi.

3 The Model

The rows of X, which are the multinomial natural parameters for the word
counts (rows of Y'), are not independent of each other. Here we describe how
the rows of X are interdependent.

In earlier writing [1], we discussed an embedding of the multinomial param-
eter vector as a vector in Euclidean space, R%. To cause the rows of X to be
tied, we embed the hierarchy as a set of Euclidean vectors and require that each
row of X is a sum of vectors corresponding to its path through the hierarchy.
Each node in the hierarchy has a corresponding vector. We arrange the vectors
of level [ as the rows of the matrix W'. Matrix W' has n; rows. Each row of X
is a sum of vectors from W,
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where szk (iy,; designates the entry of Wk in the p*(i)*" row and ;" column.
In fact, each node in the hierarchy can be characterized by a point in Euclidean
space which is the sum of the vectors corresponding to the node and all of
its parents. If paragraphs are the level immediately above sentences in the
hierarchy, then this point for each paragraph can be thought of as the “focus”
for sentences contained in that paragraph. In fact, for each node in the hierachy,

it’s corresponding location is the location of its parent, plus its vector.

4 Regularization

If we simply minimize negative log-likliehood of the data, the hierarchical struc-
ture would have no impact on learning. To encourage the model to make use
of the hierarchical structure, we add a penalty which is the trace norm of the

1 Note that we use capital P for probability functions and lower-case p for the “parent of”
function.



stacked W* matrices. The trace norm is equal to the sum of the singular values
of the stacked W* matrices, or it is equal to the sum of the axis radii of the
elipsoid that contains all of the W vectors. The penalty encourages vectors
to be relatively short and to point in similar directions. Only when the data
strongly shows evidence to the contrary should a vector be long or point in an
unusual direction. Let W be the stacked W? matrices,

MO
Ml
w=| . |. (3)
Mm
Then, our minimization objective is
n d
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where X is defined as above, ||W]||t, is the trace norm of W and X is the regu-
larization which trades-off between fit to the data and small trace norm.
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