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1 Mixture Models

A popular approach for both classification and clustering is to assume that data
is generated by a mixture model. Support of the mixture model for classification
has waned as discriminative models have gained popularity. However, the mix-
ture model is a valuable element of statistics and remains useful for clustering.
Furthermore, reasoning about mixture models is often relatively simple, so they
may still provide valuable intuition for the development of classification models.

A mixture model assumes that each datum is generated via a two-stage
process. First, a class is selected according to a multinomial distribution. Sec-
ond, a datum is generated for the selected class. Typically, class models have a
common form, but different parameter settings.

In this work, we will discuss mixture models where the individual class mod-
els generated data in a low-dimensional subspace. This type of model is some-
times called a “mixture of subspaces” model.

2 Previous Work

Hinton et al. [3] discuss two mixture of subspaces models. The first uses Princi-
pal Components Analysis (PCA) for the class model. The second uses a Factor
Analysis (FA) class model.

2.1 Principal Components Analysis

Given data X ∈ R
n×d, PCA finds the k < d orthogonal directions of maximal

variance. In other words, PCA finds

(v1, . . . ,vk) = arg max
u1⊥···⊥uk,‖ui‖=1∀i

k
∑

i=1

‖Xui‖
2

2. (1)
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The orthonormal vectors (v1, . . . ,vk) are known as the principal components
and define a subspace of R

d. Viewed as a likelihood model, PCA is an improper
Gaussian, improper since it cannot be normalized. PCA uses infinite variance
in the directions of the principal components and unit variance elsewhere. Let
V be an orthogonal matrix where the first k rows are the principal components.
Then the PCA likelihood distribution is N (0, V ΣV T ), where Σ is diagonal with
first k entries ∞, and remaining entries unity, Σ = diag(∞, . . . ,∞, 1, . . . , 1),

PPCA(X |v1, . . . ,vk) ∝ exp(−XVΣ−1V TXT ) (2)

As Hinton et al. note, the PCA “model” is seriously deficient. Viewing
the classification/clustering task as one of transmitting labels, the PCA model
ignores the costs of communicating (1) the model, and (2) the projections of the
data onto the principal components. It is also rigid in that it uses a constant
variance for the non-principal component directions.

2.2 Factor Analysis

Factor Analysis (FA) can be viewed as an extension to PCA which fixes two of
the three above-mentioned issues. A set of k “factors” (principal components)
are chosen by the model. Whereas PCA simply ignores the factor “space,” FA
provides a full, normalizable model. The data is assumed to be a sum of the
factors projected into data space, plus noise,

x = Λz + u, (3)

where z ∼ N (0, Ik), and u ∼ N (0, diag(ψ)) [2]. I.e. the components of the data
are independent given the factors. The interpretation of the factors are differ-
ent from that of the principal components. Whereas PCA finds directions of
maximum variance, FA has parameters to specifically capture axis-aligned vari-
ance (ψ). The factors are used to allow additional control over a k-dimensional
subspace. I.e. the underlying data is assumed to be a transformation from a
k-dimensional subspace; the observed data is corrupted with simple Gaussian
noise. The FA likelihood is

PFA ∝ exp(−X [ΛΛT + diag(ψ)]−1XT ). (4)

As long as the noise in all dimensions is non-zero, ψ > 0, the covariance matrix
(ΛΛT +diag(ψ)) is positive definite and thus the data likelihood is normalizable.

3 Modeling the Factors

Though the factors (z) are technically modeled by a unit Normal distribution,
they are, in effect, only restricted in number. The “factor loading matrix” (Λ)
yields an arbitrary rank k covariance matrix for the distribution of the factors
in data space, Λz ∼ N (0,ΛΛT ). Hence, except for the rank constraint, which
limits the number of factors, and the zero-mean Gaussianity assumption, there
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is no preference for how the factors are distributed—there is no preference in the
choice of factor loading matrix. In other words, Factor Analysis (FA) does not
account for the cost of communicating the model (the directions of the factors
in data space).

Here we extend FA to account for the cost of the model. We do this by
introducing a prior on the factor loading matrix. This may sound simple, but
is, in fact, subtle. The idea behind Factor Analysis is to presume that underlying
data comes from a low-dimensional sub-space. However, a simple matrix prior,
such as the Frobenius norm1 does not encourage a low-rank solution, much like
a Gaussian prior or L2-norm penalty does not encourage zero weights. What
we would like is a prior which is a generalization of the Laplacian prior or L1-
norm weight penalty. The trace norm2, or sum of singular values of a matrix is
one such generalization. In fact, it is likely the only generalization which is not
limited in the type of (real) matrices to which it can be applied. The trace norm
can be trivially extended to a concave prior over matrices which encourages low
rank,

P (X) ∝ exp(−λ‖X‖Σ) (5)

[4], where λ > 0 is a constant which controls the strength of the prior. λ can
be thought of as a continuous version of the rank, k. However, the relationship
is inverted. A small value of λ encourages a high-rank solution, whereas a large
value encourages a low-rank solution.

Our extension of Factor Analysis to include a modeling of the factors is
to simply include the trace norm distribution as a prior on the factor loading
matrix. Whereas before the factor loading matrix was rank-limited, here we
allow it to be full-size, Λ ∈ R

d×d. Instead of imposing a hard constraint on the
rank of the factor loading matrix, we use the trace norm prior as a soft penalty
which encourages low rank.

Let S ≡ ΛT Λ + diag(ψ). Then, the updated model is

P (X |Λ,ψ)P (Λ|λ) ∝
exp

(

− 1

2
Tr

[

XS−1XT
])

|2πS|1/2
exp(−λ‖Λ‖Σ), (6)

The model is still incomplete, as we have yet to add (informative) priors for
ψ and λ. However, we have substantially reduced the number of parameters
without a prior. And, additional priors might make comparison of the two
models more difficult.

Note that our updated FA model with a trace norm prior may be easily sub-
stituted for the FA model in Mixtures of Factor Analyzers clustering framework
(see e.g. §3 of [3]).

1The Frobenius norm of a matrix, X, is the square root of the sum of the squared entries,
‖X‖2

Fro
=

P

i,j X
2

i,j .
2The trace norm is also known as the nuclear norm and the Ky-Fan norm. See Fazel [1]

§5 for a development of the trace norm and discussion of some of its properties.
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