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1 Preliminaries

Let ~y ∈ Ln+1, L = {1, . . . , l}, be a sequence of labels. Let X ∈ Rn×d be
a sequence of observations, each row corresponding to a consecutive pair of
labels. Define a weight array, W ∈ Rd×l×l, such that each “row” corresponds to
a consecutive pair of labels. The Conditional Random Field assigns the following
conditional negative log-likelihood,

− log P (~y|X;W ) = log Z(X, W ) −
n∑

i=1

XiW(·,yi,yi+1) +
λ

2
‖W‖2

Fro, (1)

where “Fro” denotes the Frobenius norm. The normalization constant is

Z(X, W ) =
∑

~s∈Ln+1

exp

(∑
i

XiW(·,si,si+1)

)
. (2)

Note that due to the structure of the problem, we do not need to sum over all
possible labelings in order to calculate the normalization constant. We can sum
over each position in turn,

Z(X, W ) =
∑
sn

· · ·

(∑
s2

(∑
s1

exp(X1W((·,s1,s2))

)
exp(X2W(·,s2,s3))

)
· · · exp(XnW(·,sn,sn+1)).

(3)

2 Learning

The partial derivatives take the usual form, expected feature values minus em-
pirical feature values.

−∂ log P

∂Wjuv
=

n∑
i=1

∑
~s∈Ln+1|wi=u,wi+1=v

XijP (~y|X, W ) −
∑

i|yi=u,yi+1=v

Xij + λWjuv.

(4)
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To write this more compactly, define a transition matrix M = exp(XW ), M ∈
Rn×l×l. Mi is the (unnormalized) transition probability matrix, from t = i to
t = i + 1. We calculate forward and backward probabilities. Define

~α1 = ~1, ~αi+1 = ~αT
i Mi for i ∈ {2, . . . , n + 1}. (5)

Note that Z(X, W ) = ~αT
n+1

~1. The backwards probabilities are defined similarly,

~βn+1 = ~1, ~βi = Mi
~βi+1 for i ∈ {1, . . . , n}. (6)

Note that Z(X, W ) = ~1T ~β1. Define

Y ∈ {0, 1}n×l×l, Yiuv =
{

1 if yi = u, yi+1 = v
0 othw. . (7)

Define

C ∈ Rn×l×l, Ci = (~αi
~βT

i+1) ∗ Mi, (8)

where ∗ is element-wise product. Note that Ciuv is the (unnormalized) model
probability assigned to all sequences, ~s, with si = u, si+1 = v. Now we can
write the derivative more compactly,

−∂ log P

∂W
= XT C − XT Y + λW, (9)

The gradient can be used in conjunction with Conjugate Gradients or L-BFGS
to solve for the optimal weight matrix.

3 Inference

Define the backward max-probabilities:

β(n+1,j) = 1,∀j βij = max
k

Mijkβ(i+1,k). (10)

βij is the (unnormalized) probability of the max-likelihood sequence (t = i to
t = n + 1) beginning in state j. Then, the max-likelihood sequence is ~s∗, where
s∗1 = maxk β1k and

s∗i+1 = max
j

M(i,s∗i ,j)β(i+1,j) for i ∈ {1, . . . , n}. (11)
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