
Learning How to Cluster
With Application to Coreference Resolution

Jason D. M. Rennie
jrennie@csail.mit.edu

August 13, 2004

1 The Problem
We consider the problem of co-reference resolution. We assume that noun
phrases have already been extracted; let's call each NP a \mention." What
is left is the task of determining which mentions refer to the same thing. We
assume that we have a training corpus where this has already been done. Let
f(x1; y1); : : : ; (xl; yl)g be a set of l mentions and their \labels;" the label of an ex-
ample is nothing more than an identi�er|examples xi and xj refer to the same
entity i� yi = yj . Given a new text and extracted mentions, fxl+1; : : : ; xl+ug,our goal is to provide label identi�ers so that yi = yj i� xi and xj refer to the
same entity.

2 The Idea
Co-reference resolution can be thought of as a clustering problem: the task is
to group together mentions that refer to the same thing. But unlike more tradi-
tional clustering problems like document clustering, similarity is asymmetrical.
Consider this example:

President Bush addressed the crowd. \We must fortify our country
against terrorism," he said.

\He" refers to \President Bush," not the other way around. Reference is usually
uni-directional. One reference refers to another; a chain of references ultimately
refer to a root reference that provides the full name of a named entity. We use
this as the basis for our model: each reference chain is identi�ed by a single,
\root" mention.

3 The Game
We formulate the co-reference resolution problem as a game. As in many re-
inforcment learning problems, the goal is to maximize expected reward. But,

1



1

2 3

4

0

Figure 1: An example graph.

unlike most reinforcement learning problems, we will not be selecting actions;
rather, we will be designing a \world" so that some set of actions (out of our
control) maximize reward. Solving the game corresponds to training a model
for co-reference resolution.

Our \world" is a collection of graphs. There is one graph for each cluster in
our training data, f1; : : : ; ng. Each graph has one vertex per example, plus one
special \zero" vertex. There is an edge from each non-zero vertex to every other
vertex. See Figure 1 for a graphical depiction. Each vertex represents a state
and each edge represents a transition. State zero is an end/termination state.
Associated with each edge is a transition probability. Transition probabilities
are the same for all n graphs. In each graph, there is a special non-zero vertex,
the \root," such that if a transition is made from the root to the zero vertex,
we gain a reward of 1. Other transitions yield no reward.

The game is as follows. Set transition probabilities and roots so as to max-
imize total expected reward. Each example, xi, starts at node i in graph yiand follows a random walk according to the transition probabilities. Our total
expected reward is the sum of expected rewards for each example.

4 A Comment on Mechanism Design
This game can be related to the Economics problem of mechanism design. The
mechanism design problem is as follows. Two (or more) parties would like to
create an agreement to bene�t the involved parties. The goal is to design an
agreement that will be mutually bene�cial and not encourage the parties to lie
or take advantage of each other. In some ways, our game is similar. Designing
a contract can be compared to determining the transition probabilities and
roots in our game. For each con�guration, we can exactly determine the total
expected reward; likewise for the mechanism design problem, exact payo� can be
calculated for a given contract. However, mechanism design involves a trade-o�
between multiple parties; our game is not between multiple parties, but similar
to mechanism design, there is no single \correct" objective.

2



5 Roots
De�ne the probability of a random walk staring at i making a j ! 0 transition
to be

pi(j) = qi0�i(j) +Xk
qikpk(j); (1)

where �i(j) equals one if i equals j, zero otherwise, and qab is the probability of
transitioning from state a to state b. Note that if the fqabg are speci�ed, we candirectly retrieve the probabilities via matrix inversion. The vectorized recursive
equation is:

~p(j) = ~q0~�(j) +Q~p(j): (2)
The solution is

~p(j) = ~q0~�(j)(I �Q)�1: (3)
We say that the most likely zero-transition for a state is its \root." The root
for state i is r�(i) = argmaxj pi(j).

6 Generalization
So far, we have assumed that roots and transition probabilities are given. We
have also focused on the training data. For this framework to be useful for
supervised learning, we must be able to learn roots and transition probabilities
and generalize to unseen data.

Let r(y) be the root for graph (label) y. Total expected reward (TER) can
be written as

lX
i=1

pi(r(yi)): (4)

TER is an objective that can be used to determine transition probabilities and
roots. But, the problem is underconstrained; without constraints on the transi-
tion probabilities, TER can be trivially maximized.

We now constrain the transition probabilities. De�ne
qi0 = 1

Zi exp(w0); and; (5)
qij = 1

Zi exp(s(i; j)); (6)
Where Zi =Pnj=0 qij is the normalization constant and s(i; j) is the similarity
between examples i and j. Similarity is de�ned as:

s(i; j) =X
k

wkfk(i; j): (7)

3



where the ffkg are features on pairs of examples and the fwkg are weights
that provide a metric on the feature space. For the problem of co-reference
resolution, the ffkg should be de�ned so that, given appropriate weights, s(i; j)
is large if i refers to j and s(i; j) is small if i does not refer to j.

Given a set of training data, f(x1; y1); : : : ; (xl; yl)g, we learn weights to max-
imize TER. But, since the training data does not specify roots, only which ex-
amples are in the same cluster, we must use a relaxed form of TER that learns
the root for each cluster. Let ryi represent the weight of example i as the root
of cluster y. We de�ne the relaxed TER objective as:

lX
i=1
X

j:yj=yi
exp(ryj)

Zy pi(j); (8)

where Zy =Pj exp(ryj) is the normalization constant. exp(ryj)Zy can be thought
of the probability that example j is the root for graph y. By maximizing the
relaxed TER objective, we learn roots for the training data; we also learn the
weights, fwkg, that allow us to generalize similarity to new data. Given a set
of trained weights, fwkg, we use Equation 3 to solve for root probabilities, then
we assign two examples, xi and xj , to the same cluster if they have the same
roots (r�(i) = r�(j)).

7 Co-Reference Resolution and Consistency
The root probability de�nition as we have de�ned it is recursive. This is inappro-
priate for the problem of co-reference resolution|nearly all refernces are back-
references. Identifying the occasional forward-reference may best be treated as
a separate task. To restrict our model to back-references, we alter pi(j) so thatthe sum is only over k < i:

pi(j) = qi0�i(j) +Xk<i
qikpk(j): (9)

The normalization terms for the q's are rede�ned appropriately: Zi =Pi�1j=0 qij .There are additional advantages to this model: (1) the fpi(j)g can be solved
via dynamic programming (matrix inversion is unnecessary), and (2) we can
show that determining roots fr�(i)g for a set of test data is \consistent." By
consistent, we mean that r�(r�(i)) = r�(i) 8i; that is, the root of any example
is a self-root. Thus, in labeling testing data according to roots, a root is always
part of the same cluster as examples that point to it.

4



7.1 Consistency Proof

We show something slightly stronger than discussed. Note that pi(r�(i)) �pi(j) 8j.
Theorem 1. Let i < j < k. pj(i) > pj(j)) pk(i) > pk(j).
Proof.

pk(i) � pj(i) X
p:path k!j

Y
(a;b)2p

qab > pj(j) X
p:path k!j

Y
(a;b)2p

qab = pk(j): (10)

Thus, each reference chain has a unique \root."

8 Convexity
Note that the (relaxed) TER objective is not convex. We can write pi(j) asa weighted sum of delta functions; if the coe�cients of all the delta functions
were log-linear, a convex objective would be possible. However, the coe�cients
are sums of log-linear terms. The normalization constant is a sum of log-linear
terms. Generally speaking, ratios of convex functions are not convex.

9 Alternate Objective Function
Our TER objective function can be compared to a minimization of classi�cation
errors for a classi�caiton problem. However, this objective is, in principle, not
convex. Most classi�cation algorithms use a bound on the classi�caiton error,
such as logistic loss or hinge loss. Reward in this problem is equivalent to
classi�cation accuracy. We achieve a bound on classi�cation error by taking the
log of the product of the rewards:

log
lY

i=1
pi(r(yi)) =

lX
i=1

log pi(r(yi)): (11)

5


