Regularized Logistic Regression is Strictly Convex

Jason D. M. Rennie jrennie@csail.mit.edu

January 9, 2005

Abstract

We show that Logistic Regression and Softmax are convex.

1 Binary LR

Let $X = {\vec{x}_1, \ldots, \vec{x}_n}, \vec{x}_i \in \mathbb{R}^d$, be a set of examples. Let $\vec{y} = {y_1, \ldots, y_n}, y_i \in {-1, +1}$, be a corresponding set of labels. Logistic Regression learns parameters¹ $\vec{w} \in \mathbb{R}^d$ so as to minimize

$$-\log P(\vec{y}|X, \vec{w}) = \sum_{i=1}^{n} \log \left(1 + \exp(-y_i \vec{w}^T \vec{x}_i) \right).$$
(1)

To show that the LR objective is convex, we consider the partial derivatives. Define $g(z) = \frac{1}{1+e^{-z}}$. Note that $1 - g(z) = \frac{e^{-z}}{1+e^{-z}}$ and $\frac{\partial g(z)}{\partial z} = -g(z)(1 - g(z))$.

$$\frac{\partial \log P(\vec{y}|X,\vec{w})}{\partial w_j} = -\sum_{i=1}^n y_i x_{ij} (1 - g(y_i \vec{w}^T \vec{x}_i))$$
(2)

$$\frac{\partial^2 \log P(\vec{y}|X, \vec{w})}{\partial w_j \partial w_k} = \sum_{i=1}^n y_i^2 x_{ij} x_{ik} g(y_i \vec{w}^T \vec{x}_i) (1 - g(y_i \vec{w}^T \vec{x}_i))$$
(3)

To show that the objective is convex, we first show that the Hessian (the matrix of second derivatives) is positive semi-definite (PSD). A matrix, M, is PSD iff $\vec{a}^T M \vec{a} \geq 0$ for all vectors \vec{a} . Let ∇^2 be the Hessian for our objective. Define $P_i := g(y_i \vec{w}^T \vec{x}_i)(1 - g(y_i \vec{w}^T \vec{x}_i))$ and $\rho_{ij} = x_{ij} \sqrt{P_i}$. Then,

$$\vec{a}^T \nabla^2 \vec{a} = \sum_{i=1}^n \sum_{j=1}^d \sum_{k=1}^d a_j a_k x_{ij} x_{ik} P_i,$$
(4)

$$=\sum_{i=1}^{n}\vec{a}^{T}\vec{\rho}_{i}\vec{\rho}_{i}^{T}\vec{a}\geq0,$$
(5)

¹In terms of the two vector formulation, $\vec{w} = W_{+} - W_{-}$.

Note that $\vec{a}^T \vec{\rho}_i \vec{\rho}_i^T \vec{a} = (\vec{a}^T \vec{\rho}_i)^2 \ge 0$. Hence, the Hessian is PSD. Theorem 2.6.1 of Cover and Thomas (1991) gives us that an objective with a PSD Hessian is convex. If we add an L2 regularizer, $C\vec{w}^T\vec{w}$, to the objective, then the Hessian is positive definite and hence the objective is strictly convex.

2 Two-weight LR

Let $X = {\vec{x_1}, \ldots, \vec{x_n}}, \vec{x_i} \in \mathbb{R}^d$, be a set of examples. Let $\vec{y} = {y_1, \ldots, y_n}, y_i \in {-1, +1}$, be a corresponding set of labels. Logistic Regression learns parameters $W_- \in \mathbb{R}^d$ and $W_+ \in \mathbb{R}^d$ so as to minimize

$$-\log P(\vec{y}|X,W) = \sum_{i=1}^{n} \log \left(\exp(W_{+}\vec{x}_{i}) + \exp(W_{-}\vec{x}_{i}) \right) - \sum_{i=1}^{n} W_{y_{i}}\vec{x}_{i}.$$
 (6)

To show that the LR objective is convex, we consider the partial derivatives. Define $Z_i := \exp(W_+ \vec{x}_i) + \exp(W_- \vec{x}_i)$. Define $P_{+i} = \exp(W_+ \vec{x}_i)/Z_i$ and $P_{-i} = \exp(W_- \vec{x}_i)/Z_i$.

$$\frac{\partial \log P(\vec{y}|X,W)}{\partial W_{uj}} = \sum_{i=1}^{n} x_{ij} P_u - \sum_{i|y_i=u} x_{ij}$$
(7)

$$\frac{\partial^2 \log P(\vec{y}|X,W)}{\partial W_{uj} \partial W_{vk}} = \delta_{u=v} \sum_{i=1}^n x_{ij} x_{ik} P_{ui} - \sum_{i=1}^n x_{ij} x_{ik} P_{ui} P_{vi} \tag{8}$$

$$= (-1)^{\delta_{u=v}+1} \sum_{i=1}^{n} x_{ij} x_{ik} P_{+i} P_{-i}$$
(9)

To show that the objective is convex, we first show that the Hessian (the matrix of second derivatives) is positive semi-definite (PSD). A matrix, M, is PSD iff $\vec{a}^T M \vec{a} \ge 0$ for all vectors \vec{a} . Let ∇^2 be the Hessian for our objective. Define $\rho_{iuj} := u x_{ij} \sqrt{P_{+i} P_{-i}}$.

$$\vec{a}^T \nabla^2 \vec{a} = \sum_{i=1}^n \sum_{j,k,u,v} (-1)^{\delta_{j=u}+1} a_{uj} a_{vk} x_{ij} x_{ik} P_{+i} P_{-i}$$
(10)

$$=\sum_{i=1}^{n}\vec{a}^{T}\vec{\rho}_{i}\vec{\rho}_{i}^{T}\vec{a}\geq0,$$
(11)

Note that $\vec{a}^T \vec{\rho}_i \vec{\rho}_i^T \vec{a} = (\vec{a}^T \vec{\rho}_i)^2 \ge 0$. Hence, the Hessian is PSD. Theorem 2.6.1 of Cover and Thomas (1991) gives us that an objective with a PSD Hessian is convex. If we add an L2 regularizer, $C(W_-W_-^T + W_+W_+^T)$, to the objective, then the Hessian is positive definite and hence the objective is strictly convex.

Note that we abuse notation by collapsing two indices into a single vector, e.g. $\vec{a} = (a_{-1}, a_{-2}, \dots, a_{-d}, a_{+1}, \dots, a_{+d})$. Similar for ρ .

3 Softmax

Next, we show that the multiclass generalization of LR, commonly known as "softmax," is convex. Let $\vec{y} = \{y_1, \ldots, y_n\}, y_i \in \{1, \ldots, m\}$, be the set of multi-class labels. Softmax learns parameters $W \in \mathbb{R}^{m \times d}$ so as to minimize

$$-\log P(\vec{y}|X,W) = \sum_{i=1}^{n} \left[\log \left(\sum_{u=1}^{m} \exp(W_u \vec{x}_i) \right) - W_{y_i} \vec{x}_i \right].$$
(12)

We use W_u (W_{y_i}) to denote the u^{th} (y_i^{th}) row of W. To show that the Softmax objective is convex, we consider the the partial derivatives. Define $Z_i = \sum_{u=1}^m \exp(W_u \vec{x}_i)$ and $P_{iu} = \exp(W_u \vec{x}_i)/Z_i$. Note that

$$\frac{\partial P_{iu}}{\partial W_{vk}} = x_{ik} P_{iu} \left[\delta_{u=v} (1 - P_{iu}) - \delta_{u \neq v} P_{iv} \right].$$
(13)

$$\frac{\partial \log P(\vec{y}|X,W)}{\partial W_{uj}} = \sum_{i=1}^{n} x_{ij} P_{iu} - \sum_{i|y_i=u} x_{ij}$$
(14)

$$\frac{\partial^2 \log P(\vec{y}|X,W)}{\partial W_{uj} \partial W_{vk}} = \sum_{i=1}^n x_{ij} x_{ik} P_{iu} \left[\delta_{u=v} (1 - P_{iu}) - \delta_{u \neq v} P_{iv} \right]$$
(15)

By the Diagonal Dominance Theorem (see the Appendix), the Hessian (the matrix of second derivatives) is positive semi-definite (PSD). Theorem 2.6.1 of Cover and Thomas (1991) gives us that an objective with a PSD Hessian is convex. If we add an L2 regularizer, $C \sum_{u} W_{u} W_{u}^{T}$, to the objective, then the Hessian is positive definite and hence the objective is strictly convex.

Appendix

Theorem 1 (Diagonal Dominance Theorem) Suppose that M is symmetric and that for each i = 1, ..., n, we have

$$M_{ii} \ge \sum_{j \ne i} |M_{ij}|. \tag{16}$$

Then M is positive semi-definite (PSD). Furthermore, if the inequalities above are all strict, then M is positive definite.

Proof: Recall that an eigenvector is a vector \vec{x} such that $M\vec{x} = \gamma \vec{x}$. γ is called the eigenvalue for \vec{x} . Let $M \in \mathbb{R}^{n \times n}$ be a symmetric matrix. Then M has n eigenvectors with real eigenvalues. Consider an eigenvector, \vec{x} , of M with eigenvalue γ . Then, $M\vec{x} = \gamma \vec{x}$. In particular, $M_{ii}x_i + \sum_{j \neq i} M_{ij}x_j = \gamma x_i$. Let i be such that $|x_i| \geq |x_j| \forall j$. Now, assume $M_{ii} \geq \sum_{j \neq i} |M_{ij}| \forall i$. Then we see that $\gamma \geq 0$. Hence, all eigenvalues of M are non-negative and M is PSD. If the inequalities in our assumption are strict, then eigenvalues of M are positive and M is positive definite. \Box

References

Cover, T., & Thomas, J. (1991). *Elements of information theory*. John Wiley & Sons, Inc.