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Abstract

We show that Logistic Regression and Softmax are convex.

1 Binary LR

Let X = {~x1, . . . , ~xn}, ~xi ∈ Rd, be a set of examples. Let ~y = {y1, . . . , yn},
yi ∈ {−1,+1}, be a corresponding set of labels. Logistic Regression learns
parameters1 ~w ∈ Rd so as to minimize

− log P (~y|X, ~w) =
n∑

i=1

log
(
1 + exp(−yi ~w

T ~xi)
)
. (1)

To show that the LR objective is convex, we consider the partial derivatives.
Define g(z) = 1

1+e−z . Note that 1− g(z) = e−z

1+e−z and ∂g(z)
∂z = −g(z)(1− g(z)).

∂ log P (~y|X, ~w)
∂wj

= −
n∑

i=1

yixij(1− g(yi ~w
T ~xi)) (2)

∂2 log P (~y|X, ~w)
∂wj∂wk

=
n∑

i=1

y2
i xijxikg(yi ~w

T ~xi)(1− g(yi ~w
T ~xi)) (3)

To show that the objective is convex, we first show that the Hessian (the matrix
of second derivatives) is positive semi-definite (PSD). A matrix, M , is PSD iff
~aT M~a ≥ 0 for all vectors ~a. Let ∇2 be the Hessian for our objective. Define
Pi := g(yi ~w

T ~xi)(1− g(yi ~w
T ~xi)) and ρij = xij

√
Pi. Then,

~aT∇2~a =
n∑

i=1

d∑
j=1

d∑
k=1

ajakxijxikPi, (4)

=
n∑

i=1

~aT ~ρi~ρ
T
i ~a ≥ 0, (5)

1In terms of the two vector formulation, ~w = W+ −W−.
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Note that ~aT ~ρi~ρ
T
i ~a = (~aT ~ρi)2 ≥ 0. Hence, the Hessian is PSD. Theorem 2.6.1

of Cover and Thomas (1991) gives us that an objective with a PSD Hessian is
convex. If we add an L2 regularizer, C ~wT ~w, to the objective, then the Hessian
is positive definite and hence the objective is strictly convex.

2 Two-weight LR

Let X = {~x1, . . . , ~xn}, ~xi ∈ Rd, be a set of examples. Let ~y = {y1, . . . , yn},
yi ∈ {−1,+1}, be a corresponding set of labels. Logistic Regression learns
parameters W− ∈ Rd and W+ ∈ Rd so as to minimize

− log P (~y|X, W ) =
n∑

i=1

log (exp(W+~xi) + exp(W−~xi))−
n∑

i=1

Wyi
~xi. (6)

To show that the LR objective is convex, we consider the partial derivatives.
Define Zi := exp(W+~xi) + exp(W−~xi). Define P+i = exp(W+~xi)/Zi and P−i =
exp(W−~xi)/Zi.

∂ log P (~y|X, W )
∂Wuj

=
n∑

i=1

xijPu −
∑

i|yi=u

xij (7)

∂2 log P (~y|X, W )
∂Wuj∂Wvk

= δu=v

n∑
i=1

xijxikPui −
n∑

i=1

xijxikPuiPvi (8)

= (−1)δu=v+1
n∑

i=1

xijxikP+iP−i (9)

To show that the objective is convex, we first show that the Hessian (the matrix
of second derivatives) is positive semi-definite (PSD). A matrix, M , is PSD iff
~aT M~a ≥ 0 for all vectors ~a. Let ∇2 be the Hessian for our objective. Define
ρiuj := uxij

√
P+iP−i.

~aT∇2~a =
n∑

i=1

∑
j,k,u,v

(−1)δj=u+1aujavkxijxikP+iP−i (10)

=
n∑

i=1

~aT ~ρi~ρ
T
i ~a ≥ 0, (11)

Note that ~aT ~ρi~ρ
T
i ~a = (~aT ~ρi)2 ≥ 0. Hence, the Hessian is PSD. Theorem 2.6.1

of Cover and Thomas (1991) gives us that an objective with a PSD Hessian is
convex. If we add an L2 regularizer, C(W−WT

− + W+WT
+ ), to the objective,

then the Hessian is positive definite and hence the objective is strictly convex.
Note that we abuse notation by collapsing two indices into a single vector,

e.g. ~a = (a−1, a−2, . . . , a−d, a+1, . . . , a+d). Similar for ρ.
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3 Softmax

Next, we show that the multiclass generalization of LR, commonly known as
“softmax,” is convex. Let ~y = {y1, . . . , yn}, yi ∈ {1, . . . ,m}, be the set of
multi-class labels. Softmax learns parameters W ∈ Rm×d so as to minimize

− log P (~y|X, W ) =
n∑

i=1

[
log

(
m∑

u=1

exp(Wu~xi)

)
−Wyi~xi

]
. (12)

We use Wu (Wyi
) to denote the uth (yi

th) row of W . To show that the
Softmax objective is convex, we consider the the partial derivatives. Define
Zi =

∑m
u=1 exp(Wu~xi) and Piu = exp(Wu~xi)/Zi. Note that

∂Piu

∂Wvk
= xikPiu [δu=v(1− Piu)− δu 6=vPiv] . (13)

∂ log P (~y|X, W )
∂Wuj

=
n∑

i=1

xijPiu −
∑

i|yi=u

xij (14)

∂2 log P (~y|X, W )
∂Wuj∂Wvk

=
n∑

i=1

xijxikPiu [δu=v(1− Piu)− δu 6=vPiv] (15)

By the Diagonal Dominance Theorem (see the Appendix), the Hessian (the
matrix of second derivatives) is positive semi-definite (PSD). Theorem 2.6.1 of
Cover and Thomas (1991) gives us that an objective with a PSD Hessian is
convex. If we add an L2 regularizer, C

∑
u WuWT

u , to the objective, then the
Hessian is positive definite and hence the objective is strictly convex.

Appendix

Theorem 1 (Diagonal Dominance Theorem) Suppose that M is symmet-
ric and that for each i = 1, . . . , n, we have

Mii ≥
∑
j 6=i

|Mij |. (16)

Then M is positive semi-definite (PSD). Furthermore, if the inequalities above
are all strict, then M is positive definite.

Proof: Recall that an eigenvector is a vector ~x such that M~x = γ~x. γ is
called the eigenvalue for ~x. Let M ∈ Rn×n be a symmetric matrix. Then M
has n eigenvectors with real eigenvalues. Consider an eigenvector, ~x, of M with
eigenvalue γ. Then, M~x = γ~x. In particular, Miixi +

∑
j 6=i Mijxj = γxi. Let

i be such that |xi| ≥ |xj | ∀j. Now, assume Mii ≥
∑

j 6=i |Mij | ∀i. Then we see
that γ ≥ 0. Hence, all eigenvalues of M are non-negative and M is PSD. If the
inequalities in our assumption are strict, then eigenvalues of M are positive and
M is positive definite. 2
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