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Abstract

We show that Logistic Regression and Softmax are convex.

1 Binary LR

Let X = {#,...,Z,}, i € R?, be a set of examples. Let 4 = {y1,...,yn},
y; € {—1,41}, be a corresponding set of labels. Logistic Regression learns
parameters' @ € R? so as to minimize

—log P(§1X, %) = log (1 + exp(—y:i" &) . (1)
i=1
To show that the LR objective is convex, we consider the partial derivatives.

Define g(z) = 1+ —. Note that 1 — g(z) = 15, — and 6%(;) = —g(2)(1 — g(2)).

0log P(4) X, W)
8—] = Zyzxm ylw xl)) (2)
02 log P(4] X, )

dw,; Qwy, = Z Y2riiring (viw T 7)(1 — g(yiw” 7)) 3)

i=1

To show that the objective is convex, we first show that the Hessian (the matrix
of second derivatives) is positive semi-definite (PSD). A matrix, M, is PSD iff
a’Ma > 0 for all vectors @. Let V? be the Hessian for our objective. Define

P; = g(y;w"%;)(1 — g(y;w" %)) and p;; = x;;+/P;. Then,
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'In terms of the two vector formulation, w = Wi — W_.



Note that @’ ;p7 @ = (a’ 5;)> > 0. Hence, the Hessian is PSD. Theorem 2.6.1
of Cover and Thomas (1991) gives us that an objective with a PSD Hessian is
convex. If we add an L2 regularizer, Ci” 0, to the objective, then the Hessian
is positive definite and hence the objective is strictly convex.

2 Two-weight LR

Let X = {#,...,%n}, ¥ € R% be a set of examples. Let ¥ = {y1,-..,¥n},
y; € {—1,41}, be a corresponding set of labels. Logistic Regression learns
parameters W_ € R? and W, € R so as to minimize

—log P(y] X, W) Zlog (exp(W1Z;) + exp(W_1;)) Z Wy, 2. (6)
i=1

To show that the LR objective is convex, we consider the partial derivatives.
Define Z; := exp(W,Z;) + exp(W_Z;). Define Py; = exp(WZ;)/Z; and P_; =
exp(W_fl)/Zl

0log P(y| X, W) -
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— = Ju=y ij ik Pui — ij ik Pui Po; 8
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= (71)6":”+1 Z zijxikp-&-ip—i (9)
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To show that the objective is convex, we first show that the Hessian (the matrix
of second derivatives) is positive semi-definite (PSD). A matrix, M, is PSD iff
a’Ma > 0 for all vectors @. Let V? be the Hessian for our objective. Define

Piuj = UTijr/ PyiP—.
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Note that @l j;p7 @ = (a’ 5;)®> > 0. Hence, the Hessian is PSD. Theorem 2.6.1
of Cover and Thomas (1991) gives us that an objective with a PSD Hessian is
convex. If we add an L2 regularizer, C(W_WZ + W+WI), to the objective,
then the Hessian is positive definite and hence the objective is strictly convex.

Note that we abuse notation by collapsing two indices into a single vector,
eg d=(a_1,a_9,...,a_4,a41,...,a1q). Similar for p.



3 Softmax

Next, we show that the multiclass generalization of LR, commonly known as
“softmax,” is convex. Let ¥ = {y1,...,Un}, ¥i € {1,...,m}, be the set of
multi-class labels. Softmax learns parameters W € R™*? so as to minimize

—log P(§1X, W) =>" [log <Z eXp(Wufi)> - Wyi@-] : (12)

i=1 u=1

We use W, (W,,) to denote the u'' (y;'") row of W. To show that the
Softmax objective is convex, we consider the the partial derivatives. Define
Z; =Y exp(W,Z;) and Py, = exp(W,Z;)/Z;. Note that

JP;
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i = TikPau Buma(1 = Pa) = B Pa (13)
dlog P(y| X, W) -
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By the Diagonal Dominance Theorem (see the Appendix), the Hessian (the
matrix of second derivatives) is positive semi-definite (PSD). Theorem 2.6.1 of
Cover and Thomas (1991) gives us that an objective with a PSD Hessian is
convex. If we add an L2 regularizer, C'Y_, W, W[, to the objective, then the
Hessian is positive definite and hence the objective is strictly convex.

Appendix
Theorem 1 (Diagonal Dominance Theorem) Suppose that M is symmet-
ric and that for each i =1,...,n, we have
My >y [My). (16)
j#i

Then M is positive semi-definite (PSD). Furthermore, if the inequalities above
are all strict, then M is positive definite.

Proof: Recall that an eigenvector is a vector & such that MZ = vZ. v is
called the eigenvalue for Z. Let M € R"*" be a symmetric matrix. Then M
has n eigenvectors with real eigenvalues. Consider an eigenvector, Z, of M with
eigenvalue v. Then, MZ = v&. In particular, M;;x; + Zﬁéi M;jx; = vyx;. Let
i be such that |z;| > |2;] Vj. Now, assume M;; > >°.; [M;;| Vi. Then we see
that v > 0. Hence, all eigenvalues of M are non-negative and M is PSD. If the
inequalities in our assumption are strict, then eigenvalues of M are positive and
M is positive definite. O
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