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1 Introduction

Consider the problem of classification. Modern-day solutions have looked to-
ward problem formulations where the search space is convex. Such formula-
tions guarantee that a minimization of the objective function is found. But,
in order to achieve that guarantee, such formulations treat outliers somewhat
overzealously. Many classification objectives can be viewed as minimizing a loss
funciton. For example, the Support Vector Machine minimizes the hinge loss,∑

i lh(wT xi + b), where lh(z) = (1 − z)+. Logistic regression (LR) minimizes
a similar loss, the logistic,

∑
i ll(wT xi + b), where ll(z) = − log 1

1+e−x . Many
would not call these two losses “similar,” but they share important properties.
One is that they are convex, e.g. lh(αz1 + (1− α)z2) ≥ αlh(z1) + (1− α)lh(z2).
This is the reason that the objective has a unique minimum. Along with this
property comes a less desirable property, that the loss for a single example is
unbounded. In other words, an outlier can have an unbounded effect on the
decision boundary. In practice, regularization is used to temper this effect, but
it can produce negative effects. In summary, state-of-the-art classifiers utilize a
convex loss function to achieve an objective with a unique minimum, but as a
result, outliers can significantly effect the decision boundary.

Motivation for current, state-of-the-art techniques was a long history of clas-
sification algorithms that used non-convex objective functions. For classifica-
tion, one wishes to learn a decision boundary that will minimize the zero-one loss
(lz(x) = θ(−wT x + b), θ is the heavaside function) on unseen examples drawn
from the same distribution as the training examples. Many objectives minimized
this or something very similar. Of course, such an optimization is riddled with
local minima. Various techniques were developed to work around this prob-
lem, but none was as effective as the convex objectives that have been recently
brought forward. We believe there is still hope in a more traditional objective,
one that minimizes the zero-one loss. There are issues to be addressed—since
the zero-one loss is not convex, how can we find a good solution? But, we feel
that there are ways to sufficiently address this issue. Additionally, with the
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zero-one loss, we can properly handle outliers. Whereas convex objectives may
significantly alter their decision boundaries to handle outliers, a zero-one objec-
tive can incur a unit penalty and effective ignore points that clearly cannot be
classified correctly.

2 Bounded Loss Classification

We initially make very restrictve assumptions on the way labels are generated,
but we later relax those assumptions.

Consider a distribution that governs how labels are assigned to examples,
p(y|x). We assume that an example is assigned a label in a probabilistic man-
ner. Let w, b be parameters of the distribution; let z(x) = wT x + b; let the
distribution be defined by

p(y = +1|x;w, b) = 1− p(y = −1|x;w, b) =
1

1 + e−z(x)
. (1)

We wish to learn a decision boundary (w and b) such that the number of classi-
fication errors is minimized. In other words, we want to maximize the expected
number of correct predictions

J(w, b|{(xi, yi)}) =
∑

i

1
1 + e−yiz(xi)

. (2)

Let σi = 1
1+e−yiz(xi)

; then we can write J =
∑

i σi. It is equivalent to maximize
a monotonic transform of J . Let θ = (w, b). Let

A(θ) := log
∑

i

σi, (3)

= log
∑

i

qi
σi

qi
, (4)

≥
∑

i

qi log
σi

qi
, (5)

:= B(q, θ). (6)

This inequality motivates an approach for maximizing A. We can find a local
maximum of A through a two-step alternating minimization proceedure,

(E step) q(t+1) = arg max
q

B(q, θ(t)) (7)

(M step) θ(t+1) = arg max
θ

B(q(t+1), θ) (8)

Clearly, B(q(t+1), θ(t+1)) ≥ B(q(t), θ(t)). We must show B(q(t+1), θ(t+1)) ≥
A(θ(t)) in order that this procedure be valid.
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Consider the E step. The Lagrangian can be written

JE =
∑

i

qi log
σi

qi
− λ

(∑

i

qi − 1

)
(9)

Taking the partial with respect to qk, we find that the maximizing distribution
is qk = σkP

i σi
,

∂JE

∂qk
= log σk − 1− log qk − λ = 0, (10)

⇒ qi

qj
=

σi

σj
. (11)

Note that B(q(t+1), θ(t)) = A(θ(t)).

B(q(t+1), θ(t)) =
∑

i

σi∑
j σj

log
∑

j

σj , (12)

=
∑

j

σj , (13)

= A(θ(t)). (14)

Hence, our minimization procedure is valid.
Next, we consider the M step. This is simply a generalization of LR, where

the loss associated with each point is weighted,

max
w,b

∑

i

qi log σi. (15)

The solution must be found numerically, but it is not difficult and the maximum
is guaranteed to be found.

Worth some discussion is the effect of the qi. The logistic loss function,
ll(z) = − log 1

1+e−x , is unbounded and the slope is approximately −1 for z < 0.
i.e. there is no way to forget about “outliers.” The qi in our optimization
mitigate this and effectively put a bound on the loss of an outlier. Consider
what happens when we are close to a solution: θ changes very little so we are
approximately maximizing

∑

i

σi∑
j σj

log
∑

j

σj =
∑

j

σj , (16)

which is the noisy zero-one loss objective that we have discussed. When we are
close to a solution, the derivative of the loss with respect to a small change in the
position of an example is not only bounded, but highest near the decision bound-
ary. Examples that are far from the decision boundary (both easy-to-classify
points and outliers) have little effect on the boundary. We find this property
satisfying and possibly the most appropriate realization of margin maximization.
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3 Extensions

The algorithm we have described to this point is both ill-posed and makes
severe assumptions on the distribution of example lables. This section is con-
cerned with making the problem well posed and lifting some of the restrictive
assumptions.

3.1 Regularization

To this point, we have intentionally avoided the issue of regularization for the
purposes of clarity. But, the objective function we have discussed, A(θ), is ill
posed. It becomes well posed if we add a penalty for the magnitude of the
parameters. A common choice is the quadratic penalty, ‖w‖2. Though it is
not strictly necessary for objectives with a convex loss function when the data
is not separable (such as with unregularized SVM and logistic regression), a
regularization penalty empirically tends to improve generalization. For these
reasons, we re-pose our objective as

max
θ

A(θ) := max
w,b

log
∑

i

σi − λ‖w‖2. (17)

Manipulations like those already described yield a similar alternating minimiza-
tion procedure, with the only difference being that the M step is a generalization
of regularized LR (instead of non-regularized LR).

3.1.1 Implementation

The objective for the M step of Regularized Bounded Loss Classification is

f(θ) = max
θ

∑

i

qi log σi − C

2
‖w‖2. (18)

We use Newton’s method to find a minimum. This involves an iterative proce-
dure where

θt+1 = θt − (
f ′′(θt)

)−1
f ′(θt). (19)

Let zi = wx
i + b; let y0

i = 2yi − 1. The derivatives are

∂f

∂wj
=

∑

i

qi(1− σ(yizi))yixij − Cwj (20)

=
∑

i

(y0
i − σ(zi))qixij − Cwj , (21)

∂f

∂b
=

∑

i

qi(1− σ(yizi))yi =
∑

i

(y0
i − σ(zi))qi, (22)
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∂2f

∂wj∂wk
= −

∑

i

q2
i y2

i xijxikσ(yizi)(1− σ(yizi))− Cδj−k (23)

= −
∑

i

q2
i xijxikσ(zi)(1− σ(zi))− Cδj−k, and (24)

∂2f

∂b
= −

∑

i

q2
i y2

i σ(yizi)(1− σ(yizi)) (25)

= −
∑

i

q2
i σ(zi)(1− σ(zi)). (26)

Substituting back into equation 19 gives us one step of the iterative procedure.
We continue in this manner until ‖θt+1− θt‖ becomes very small (e.g. < 10−6).

3.2 Zero-One Loss

To this point, we have described an algorithm that approximates the zero-one
loss. We maximize the average log probability of the data points using the
assumption that the logistic reliably converts output values to probabilities.
This is a smoothed version of the zero-one loss. For λ > 0, the regularization
term ensures relatively small weights. Thus, the approximate nature of the
logistic is observable and we cannot claim to be optimizing for the zero-one
loss. However, as λ → 0, there is less encouragement for small weights. Larger
weights make the approximation look better. If we take the limit of λ → 0, we
end up minimizing the zero-one loss.

We take this approach in an annealing fashion. In other words, we begin
with λ(1) = λ > 0 (say, λ = 100). This yields a fairly smooth problem, but
one that poorly approximates the zero-one loss. After having solved for the
appropriate θ(1) := θ, we decrement λ, e.g. λ(2) = λ(1)/2, and again conduct the
minimization, this time using θ(1) as a starting point for the minimization. We
continue in this fashion until λ is small and we observe little change in successive
θ(t)’s. The resulting θ is local a minimum of the zero-one loss problem.

3.3 Non-linear Decision Boundary

Thus far we have assumed a linear decision boundary. However, many problems
require a decision bounday that is not linear. We extend our framework to
non-linear decision boundaries via a technique that has seen recent popularity.

Instead of directly parameterizing a non-linear decision boundary, we take
the reverse approach of projecting our data into a higher dimensional space.
We then find a linear decision boundary in that space. When this boundary is
projected back into the original data space, it is no longer linear—much more
complex boundaries are possible. Let Rn be the low-dimensional space and H
be the high-dimensional space. We can summarize this projection through a
kernel function, K : Rn × Rn → H, which returns the value of a dot-product

5



between two points in H. For example, take K(x,y) = (x · y)2, where · in-
dicates linear dot-product. Let Φ : Rn → H be the projective function, then
we can see that Φ(x1, x2) = (x2

1, 2x1x2, x
2
2) corresponds to our example ker-

nel function, i.e. Φ(x) · Φ(y) = K(x,y). An advantage to using a kernel
function, K, over a projection, Φ, is that we can project into an infinite-
dimensional space, for which there is no realizable projection function. For
example, K(x,y) = exp

(− 1
σ‖x− y‖2).

We return to our classification objective, with the regularizer added,

min
w,b

J = min
w,b

‖w‖
2

2

− C log
∑

i

σi, (27)

≥ min
w,b

‖w‖2
2

− C
∑

i

qi log
σi

qi
, (28)

leading us to the two-stage, EM-like minimization that we have already de-
scribed. In the M step, we minimize with respect to θ = (w, b). We de-
vlop the dual form of our objective by substituting for log σi. Recall that
zi = yi(wT xi + b). We use H(p) to denote the binary entropy function.

min
w,b

J = min
w,b

‖w‖2
2

− C
∑

i

qi max
αi∈[0,1]

(αizi −H(αi)) (29)

= max
{αi∈[0,1]}

min
w,b

‖w‖2
2

− C
∑

i

qi(αizi + H(αi)) (30)

Certain conditions allow us to reverse the order of the min and max in the
objective. Next, we solve for the minimizing w and b,

∂J

∂wk
= wk − C

∑

i

qiαiyixik = 0 ⇒ wk = C
∑

i

qiαiyixik (31)

∂J

∂b
= −C

∑

i

qiαiyi = 0 ⇒
∑

i

qiαiyi = 0 (32)

Substituting back into Equation 30, we end up with a form that only requires
us to evaluate dot-products of data points,

min
w,b

J = max
{αi∈[0,1]}

∑

i

qiH(αi)− C

2

∑

i,j

qiqjαiαjyiyj(xi · xj). (33)

Substituting K(xi,xj) for (xi · xj) gives us a non-linear decision boundary
without the requirement that we directly project any data point into a higher-
dimensional space.

What remains for us to show is that we can similiarly replace any instances
of data-point computations with the chosen kernel function. We proceded to
describe the M step first because our ability to show that the E step is kernel-
izable relies on the wk = C

∑
i αiyixik result from the M step. We avoid the
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chicken-and-egg problem by using q(1) = 1
n ∀i. The E step minimizes the

objective with respect to the qi, yielding

q
(t+1)
i =

σ
(t)
i∑

j σ
(t)
j

. (34)

Note that

σ
(t)
i =

1
1 + e−yi(w(t)·xi+b(t))

=
1

1 + e−yi(
P

j αjyj(xi·xj)+b(t))
, (35)

and as before, we can replace (xi · xj) with K(xi,xj) to achieve a non-linear
decision boundary without having to compute the projection of any xi.

4 Analysis

We have already given some reason as to why we believe this to be a reasonable
technique for classification. In this section, we further refine those reasons and
reveal properties of the classifier that may be appealing.

4.1 Convergence in Expectation

One important aspect of a classifier is for the training loss to have a strong con-
nection with the generalization loss. Let 1−f({(xi, yi)}; θ) = 1− 1

n

∑n
i=1 yi(wT xi+

b) be the average loss on the data points {(xk, yk)}. Now, consider replacing
(xk, yk) with (x′k, yk). The new loss, say 1 − f ′({(xi, yi)}; θ), is bounded by
1
n + 1 − f({(xi, yi)}; θ). As a result, we use McDiarmid’s theorem [2, 1] to
bound the difference between the average loss and the expected loss over the
underlying distribution,

Pr{E[f({(xi, yi)}; θ)]− f({(xi, yi)}; θ) ≥ ε} ≤ e−nε2 (36)

This is a powerful statement since it tightly bounds the difference between the
average loss on the training data and that of the underlying distribution. Note
that if we use the annealing approach described in section 3.2 to approach
the zero-one loss, then this is an even more powerful statement—the chance of
significant difference between training error and generalization error drops off
exponentially as a function of the number of training examples.

The above result holds if we replace f({(xi, yi)}; θ) by f̃({(xi, yi)}) = minθ f({(xi, yi)}; θ).
1− f̃({(xi, yi)}) is the average training loss for the learned decision boundary.
What remains is to relate this to the generalization error on the optimal decision
boundary. We would like to say something about

E[1− f̃ ]−min
θ

E[f({(xi, yi)}; θ), (37)

the difference between generalization error on the decision boundary optimized
based on the training data and generalization error on the optimal decision
boundary.
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4.2 Gaussian Classification

Consider the problem of classifying data points generated from two 1-D Gaussian
distributions with idential variances. Logistic regression does very well in this
case because the logistic function is the log-posterior ratio.

Let X+ ∼ N(1, 1) and X− ∼ N(−1, 1). Let x+ = (x1, . . . , xn) and x− =
(xn+1, . . . , x2n) each be a set of independent draws from X+ and X−, respec-
tively. Conventional wisdom dictates that when the form of the underlying
distribution is known, you should classify using the best-fit parameters (e.g.
Maximum a posteriori). For two equal-variance Gaussians, the decision bound-
ary corresponding to the best fit parameters minimizes the logistic loss,

L(b) =
n∑

i=1

log σ(yi(x+
i + b)), (38)

where yi = +1 for i = {1, . . . , n} and yi = −1 for i = {n + 1, . . . , 2n}. The loss
for each data point is convex, so the sum of the losses is convex and the total
loss, L(b) has a unique minimum. That minimum occurs where the derivative
with respect to b is zero,

∂L

∂b
=

∑

i

(1− σi)σi

σi
yi = 0. (39)

Equivalently, it occurs when
∑

i σi = −2n.

∑

i

σi =
n∑

i=1

1
1 + e−(xi+b)

+
2n∑

i=n+1

1
1 + exi+b

(40)

=
n∑

i=1

exi

exi + e−b
+

2n∑

i=n+1

e−b

e−b + exi
(41)

(42)

5 Conclusion

We have introduced a new class of classification algorithms that use a bounded
loss function. By doing this, our optimization problem is no longer convex,
but the solution is more closely tied to the classification objective (the zero-one
loss). We introduced an algorithm for finding a local minimum of the bounded
loss function that begins with the solution of a regularized, convex optimization
(such as the Support Vector Machine or regularized Logistic Regression). The
algorithm proceeds by reweighting examples and solving a convex optimization
at each stage. We believe that this proceedure is advantageous to gradient de-
scent algorithms that are normally used with unbounded loss functions (such
as those used with neural networks). We have shown how our algorithm can be
generalized to non-linear decision boundaries. Also, using McDiarmid’s thorem,
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we showed the importance of their being a strong connection between the train-
ing and generalization loss functions. We believe that current techniques will
remain the most effective for problems where noise is low or where there are
relatively few outliers; when noise is high or there are many outliers, it is more
important that the loss function used in optimization be closely tied to the
generalization loss. It is here that we believe our new algorithm may prove
beneficial.

Appendix

Proof of Dual Equality

Here we prove that

log
1

1 + e−z
= min

a∈[0,1]
az + a log a + (1− a) log(1− a) (43)

Let J = az+a log a+(1−a) log(1−a). Then, ∂J
∂a = z+log a

1−a . Setting ∂J
∂a = 0,

we get

a =
1

1 + ez
(44)

Substituting back into J , we get

J = log
1

1 + e−z
, (45)

which is what we wanted to show.
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