
650 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 44, NO. 7, JULY 1997

638–640, May 1990.
[18] G. Seiler and J. A. Nossek, “Winner-take-all cellular neural networks,”

IEEE Trans. Circuits Syst. II,vol. 40, pp. 184–190, Mar. 1993.
[19] G. Seiler, A. J. Schuler, and J. A. Nossek, “Design of robust cellular

neural networks,”IEEE Trans. Circuits Syst. I,vol. 40, pp. 358–364,
May 1993.
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Weighted Low-Rank Approximation of General
Complex Matrices and Its Application

in the Design of 2-D Digital Filters

W.-S. Lu, S.-C. Pei, and P.-H. Wang

Abstract—In this brief we present a method for the weighted low-rank
approximation of general complex matrices along with an algorithmic
development for its computation. The method developed can be viewed as
an extension of the conventional singular value decomposition to include
a nontrivial weighting matrix in the approximation error measure. It is
shown that the optimal rank-K weighted approximation can be achieved
by computing K generalized Schmidt pairs and an iterative algorithm
is presented to compute them. Application of the proposed algorithm to
the design of FIR two-dimensional (2-D) digital filters is described to
demonstrate the usefulness of the algorithm proposed.

Index Terms—2-D digital filters, singular value decomposition.

I. INTRODUCTION

As one of the basic and important tools in numerical linear algebra,
the singular value decomposition (SVD) [1]–[3] has found numerous
scientific and engineering applications in the past. An excellent
outline on its applications in linear algebra and linear systems can
be found in [4]. Sample applications of the SVD in automatic
control, robotics, image processing, reduced-rank signal processing,
and design of two-dimensional (2-D) digital filters can also be found
in [5]–[16]. In a filter design context, the SVD method [10]–[16]
starts with a complex matrixF obtained by sampling the desired
frequency response, and the application of SVD toF allows one to
decompose a complex 2-D design task into a set of simple 1-D design
tasks with guaranteed design accuracy. An important property of the
SVD utilized in this regard is that the SVD ofF of rank r offers
a series of optimal low-rank approximations ofF in both Euclidean
and Frobenius norm sense. That is, if

F = U�V
H

=

r

i=1

�iuiv
H

i (1)

is a SVD ofF , then for anyK between 1 andr;

min
rank(F̂ )=K

kF � F̂Kk2;F = kF � FKk2;F (2)
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where

FK =

K

i=1

�iuiv
H

i : (3)

Although the SVD method has become a successful design tool, a
weak point of the method is that it treats all entries of the sampled
frequency response matrixequally, which could in some cases lead
to degraded designs. In order to discriminate between the important
and unimportant portions of the matrix, we seek to find a low-rank
approximation ofF such that for a fixedK with 1 < K < r, the
rank K matrix

FK =

K

i=1

�iuiv
H

i (4)

best approximatesF in the weightedFrobenius norm sense. That is

min
rank(F̂ )=K

kW � (F � F̂K)kF = kW � (F � FK)kF (5)

whereW is a weighting matrix with the same size asF; W � Y
denotes the entrywise multiplication ofW with Y , which is often
termed as Hadamard or Schur product in the literature. In the rest of
the brief, we shall call (4), (5) a weighted rankK approximation ofF .

In the literature the weighted low rank approximation (WLRA)
problem was considered by Shpak [16] in a filter design context for a
real matrixF . His approach is to treat (5) as a numerical minimization
problem so that the conventional optimization techniques [17], [18]
can be used to find a solution. However, the optimization involved
requires a large amount of computation, particularly whenui and
vi are of high dimension. The objectives of this brief are twofold.
First, we investigate in Section II the WLRA for a general complex
matrix F 2 Cm�n. It is shown that for a fixedK (which is the
rank of FK approximatingF ), the WLRA can be characterized by
K generalized Schmidt pairs which are nonlinear extension of the
conventional Schmidt pairs obtained by the SVD ofF . We present
an iterative algorithm for numerical computation of the generalized
Schmidt pairs. Convergence and computation complexity issues of the
algorithm are addressed. Also proposed in Section II is a suboptimal
solution to the WLRA problem. This suboptimal WLRA (S-WLRA)
is obtained by computing one pair of vectorsui and vi at a time,
leading to considerably reduced computation complexity and hence
offers a feasible solution to those approximation problems where
the matrixF is of high dimension. As the second objective of the
brief, the S-WLRA is applied to design FIR 2-D digital filters. In
Section III, the S-WLRA is applied to design linear phase FIR 2-
D filters. An example is included to illustrate the design algorithm
and to compare the WLRA-SVD method with the conventional SVD
method.

II. WEIGHTED LOW-RANK APPROXIMATION OF COMPLEX MATRICES

A. Preliminaries

The singular value decomposition of a rectangular complex matrix
F 2 Cm�n is the decomposition (1) whereU 2 Cm�m; V 2 Cn�n

are unitary and

� =
�r 0

0 0

where �r = diagf�1; . . . ; �rg with singular values�1 � �2 �
� � � � �r > 0; r = rank(F ). Writing U = [u1 � � �ur � � �um] and
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V = [v1 � � � vr � � � vn], (1) implies that for1 � i � r

Fvi = �iui (6)

F
H
ui = �ivi (7)

with

kuik2 = kvik2 = 1 (8)

In the literature, the first pair of vectorsfu1; v1g associated with the
largest singular value�1 is called the Schmidt pair ofF [20], [21].
For the sake of convenience we, in the rest of the brief, shall call
fui; vig (for 1 � i � r) the ith Schmidt pair ofF . From (1) we see
that ther Schmidt pairs along with the associated singular values are
sufficient to characterize matrixF

F =

r

i=1

�iuiv
H
i : (9)

From a filter-design point of view, the following form of the SVD
is often used

F =

r

i=1

~ui~v
H
i (10)

where~ui = �i ui and~vi = �i vi can be interpreted as 1-D frequency
responses whenF is a sampled 2-D frequency response [14], [15].

An important property of SVD is the Eckart-Young theorem [2]
described by (2) and (3). This means that ifK pairs of 1-D transfer
functions fi(z1) and gi(z2) are found such that the sampled fre-
quency response matrix fromfi(z1)gi(z2) perfectly matches~ui~vHi ,
then K

i=1
fi(z1)gi(z2) would be an optimal design in the Euclidean

or Frobenius norm sense when the number of parallel sections used
is limited toK. Another useful property of the SVD is that the SVD
of matrix F � u1v

H
1 is

F � u1v
H
1 = U1�1V

H
1

where

U1 = [u2 � � �ur � � �] and V1 = [v2 � � � vr � � �]

are column-orthogonal, and

�1 =
�2r 0

0 0
; �2r = diagf�2; . . . ; �rg:

Consequently, the Eckart–Young theorem implies that

min
rank(F̂ )=K

F � u1v
H
1 � F̂K 2;F

= F � F
(1)

K 2;F
(11)

where

F
(1)

K =

K+1

i=2

�iuiv
H
i =

K+1

i=2

~ui~v
H
i (12)

for 1 � K � r � 1. It follows from (2), (3) and (11), (12) that the
pth Schmidt pair ofF can be obtained as thefirst Schmidt pair of
F �

p�1

i=1
�iuiv

H
i .

B. Weighted Low-Rank Approximation of a Complex Matrix

In what follows we show that the optimal solution to the weighted
rank-K approximation of a complex matrixF , which is defined by
(4) and (5), is characterized byK generalized Schmidt pairs that can
be viewed as a nonlinear version of (6) and (7). For a given complex
matrix F 2 Cm�n and a real weightingW 2 Rm�n, we consider
the error function for the rank-K approximation problem given by

J = W � F �

K

i=1

uiv
H
i

2

F

: (13)

Denoting

FW = W � F

and

Ri =W � uiv
H
i

(13) can be written as

J = tr R
H
i Ri � tr F

H
W Ri

� tr R
H
i FW + c

where tr[�] denotes the trace of the matrix involved, andc is a
constant. Computing the gradient ofJ with respect to these variables
is straightforward but tedious, and is omitted here. By letting the
gradient be zero, we obtain the following system of nonlinear
equation (14) and (15) as shown at the bottom of the page, whereu

andv are themK- andnK-dimensional column vectors defined by

u =

u1
...
uK

and v =

v1
...
vK

(16)

respectively,Pu andPv are the permutation matrices of sizemK �

mK and nK � nK such that

Puu =

u11
...

uK1

...
u1m

...
uKm

; Pvv =

v11
...

vK1

...
v1n

...
vKn

with uij andvij representing thejth entry ofui andvi, respectively,
a
(r )

ki and b(c )

ki are the inner products defined by

a
(r )

ki = w
T
rl � vk; w

T
rl � vi (17)

and

b
(c )

ki = hwcl � uk; wcl � uii (18)

(W � FW )vi =

a
(r )

1i � � � a
(r )

Ki 0 � � � � � � � � 0

0 � � � 0 a
(r )

1i � � � a
(r )

Ki 0 � � � 0

� � � � � � � � � � � � � � �

0 � � � � � � � � � a
(r )

1i � � � a
(r )

Ki

Puu  r u (14)

(W � FW )
H
ui =

b
(c )

1i � � � b
(c )

Ki 0 � � � � � � � � 0

0 � � � 0 b
(c )

1i � � � b
(c )

Ki 0 � � � 0

� � � � � � � � � � � � � � �

0 � � � � � � � � � b
(c )

1i � � � b
(c )

Ki

Pvv  c v (15)
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with wrl andwcl being thelth row and column ofW , respectively.
Further, by defining block diagonal matrix

� = diag fW

K blocks

�FW ; . . . ;W�FW g (19)

and

 r =

 r1
...

 rK

and  c =

 c1
...

 cK

(20)

theK sets of (14) and (15) withi = 1 . . . ; K can be put together as

�v =  ru (21)

�
H

u =  cv (22)

Equations (21) and (22) are important as they characterize the optimal
u and v, and therefore the optimalui and vi (for i = 1; . . . ; K)
via (16) that minimize the error functionJ . As can be seen from
(19), matrix� is independent of parametersu andv. However, the
nonzero entries in r and c are in general dependent onui andvi
quadratically as is evidenced from (14), (15), (17), and (18). In spite
of the nonlinear nature of (21), (22), it is worthwhile to notice the
analogy between (21), (22), and (6), (7). As a matter of fact, ifW

is a trivial weighting with all entries being the same constant, it can
readily be verified that thef~ui; ~vi; i = 1; . . . ; Kg obtained from the
SVD of F offers a solution to (21) and (22). It is for this reason
that we shall in the sequel callfui=kuik; vi=kvik; i = 1; . . . ; Kg

determined by (21), (22), and (16) theith generalized Schmidt pair
for the givenF; W , andK.

C. Computation of Generalized Schmidt Pairs

A Recursive Computation Scheme and a Convergence Analysis:To
obtain theK generalized Schmidt pairs, the(m + n)K nonlinear
equations defined by (21) and (22) need to be solved. In what follows
we propose a scheme for recursively computingu andv. It starts by
writing (21) and (22) as

u =  
�1

r
(u; v)�v (23a)

v =  
�1

c
(u; v)�

H

u (23b)

respectively, where the dependence of r and  c on u and v is
explicitly indicated. With an initialu(0); v(0), (23) suggests a scheme
to compute

p
(k)

=  
�1

r
(u

(k)
; v

(k)
)�v

(k) (24a)

q
(k)

=  
�1

c
(u

(k)
; v

(k)
)�
H

u
(k) (24b)

and then to obtainu(k+1)
; v

(k+1) through a linear combination of
u
(k)
; v

(k) with p
(k)
; q

(k) as

u
(k+1)

= �u
(k)

+ (1� �)p
(k) (25a)

v
(k+1)

= �v
(k)

+ (1� �)q
(k) (25b)

where� 2 (0; 1) is a relaxation parameter. Denote

x
(k)

=
u
(k)

v
(k) : (26)

Equation (24) can be expressed as

p
(k)

q
(k) =

0  
�1

r
(u(k); v(k))�

 
�1

c
(u(k); v(k))�H 0

u
(k)

v
(k)

� �(x
(k)

): (27)

Combining (25) with (26) gives

x
(k+1)

= 	(x
(k)

) (28a)

with

	(x) = �x + (1� �)�(x): (28b)

By (28a) we see that if the sequencefx(k); k = 0; 1; . . .g converges
to vector, sayx�, then x� is a fixed pointof function 	(x), i.e.,
	(x�) = x

�. By (28b), this fixed point satisfies

x
�

= �x
�

+ (1� �)�(x
�

)

which gives

x
�

= �(x
�

)

From (27) it follows thatx� = [u�T v�T ]T satisfies (23) and therefore
containsK generalized Schmidt pairs.

A sufficient condition for the convergence offx(k)g generated by
(28) is the existence of a constant� 2 (0; 1) and a positive integer
L such that

k�(x
(k)

)� �(x
(k�1)

)k � �kx
(k)
� x

(k�1)
k (29)

for k � L, wherek � k denotes the Euclidean norm. To show this,
note that by (28b) and (29) we have fork � L

k	(x
(k)

)�	(x
(k�1)

)k � 
kx
(k)

� x
(k�1)

k (30)

where 
 = � + (1 � �)� < 1. In conjunction with (28a), (30)
implies that

k	(x
(k)

)�	(x
(k�1)

)k � 

k�L+1

kx
(L)

� x
(L�1)

k:

So for sufficiently large integersm andn with m > n � L, we have

kx
(m)

� x
(n)
k �

m�n�1

l=1

kx
(n+l+1)

� x
(n+l)

k

�

m�n�1

l=0



n+l�L+1

kx
(L)

� x
(L�1)

k

=


n�L+1

� 

m�L+1

1� 

kx

(L)
� x

(L�1)
k

which approaches to zero whenm;n ! 1. Thereforefx(k)g is
a Cauchy sequence in a finite-dimensional Euclidean space, whose
convergence is guaranteed.

Furthermore, by (28a) we see that (30) is equivalent to

kx
(k+1)

� x
(k)
k � 
kx

(k)
� x

(k�1)
k

i.e.,

�k � 
 (31)

for k > L, where�k is the ratio�k = kx
(k+1)

� x
(k)
k=kx

(k)
�

x
(k�1)

k. In words, we conclude that the sequencefx(k)g generated
from (24) and (25) converges if the ratio�k has a less-than-unity
upper bound fork � L whereL is a positive integer.

Functions� and	 satisfying (29) and (30) with� < 1 and
 < 1

are calledcontraction mappings. With this term the above analysis
may be summarized as three sufficient conditions, each of which
ensures the convergence of sequencefx

(k)
g generated recursively

by (24), (25):

1) �(x) is a contraction mapping;
2) 	(x) is a contraction mapping;
3) �k has a less-than-unity upper bound fork � L.
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As a part of the convergence analysis the recursive scheme (24),
(25) was applied to a large number of randomly generated matrices
F of various sizes(1 � m; n � 40) along with randomly selected
weighting matricesW whose entries are uniformly distributed on [0,
1]. The rank parameterK in the test varies from 1 tomin(n;m). In
every case of the test, the convergence of the recursive computation
scheme (24), (25) was confirmed by verifying sufficient condition
(31). Although further investigation on the specific structure of	

and� as related to these sufficient conditions remains an interesting
issue, this numerical test offers the confidence to use it as a feasible
means to compute generalized Schmidt pairs.

We now summarize the proposed recursive computation scheme
as in Algorithm 1.

Algorithm 1

Step 1} Select initialu(0) andv(0) and setk = 0.
Step 2} Computep(k) and q(k) using (24).
Step 3} Computeu(k+1) and v(k+1) using (25).
Step 4} Define x(k+1) by (26). If kx(k+1) � x(k)k is less than

a prescribed tolerance, outputu = u(k+1); v = v(k+1),
and stop. Otherwise setk = k+1 and repeat from Step 2.

Computation Complexity:The most expensive thing in imple-
menting Algorithm 1 is to computep(k) andq(k) using (24). This is
equivalent to solving the two linear systems of equations

 rkp = bv (32a)

 ckq = bu (32b)

for p and q, where rk =  r(u
(k); v(k));  ck =  c(u

(k); v(k));

bv = �v(k), andbu = �Hu(k). At this point it is important to note
that matrices	r and c, which are characterized by (14), (15), (17),
and (18), are positive definite Hermitian matrices. It is known [3] that
such systems can be solved by using stable Cholesky decomposition
of the coefficient matrix, and requiresd3=3 flops (rather than2d3=3
flops for a general linear system) whered denotes the system’s
dimension. Hence, solving system (32a) and (32b) requires about
K3

(m3
+n3)=3 flops in each iteration whenK generalized Schmidt

pairs are sought.
The overall computation complexity is thereforek�K3

(m3
+

n3)=3 flops wherek� is the number of iterations used. There are
two factors in the algorithm implementation that are particularly
relevant to reducingk�. The first factor is the selection of the initial
vectorsu(0) and v(0). Since a generalized Schmidt pair becomes a
conventional Schmidt pair whenW is a trivial weighting, one may
use the conventional Schmidt pair asu(0) andv(0) for the nontrivial
weighting case. This choice ofu(0) andv(0) considerably reduces the
value ofk� compared to a randomly chosenu(0) andv(0) especially
when the variations in the entries ofW from a trivial one is not
large. The second factor is the choice of the relaxation parameter�.
It is observed from (25) that the updatedu(k+1) andv(k+1) contains
100�% “old” u(k) and v(k). Thus a smaller� would in general
lead to a largerk�. This observation was confirmed in our numerical
evaluation or the proposed algorithm, where an� between 0.5 and
0.9 is often found suitable.

D. A Suboptimal Solution of the WLRA Problem

Unlike the SVD for which thepth Schmidt pair ofF is equal to
the first Schmidt pair ofF � p�1

i=1
�iuiv

H
i , the generalized Schmidt

pairs defined by (21) and (22) do not in general possess this property
unless the weightingW is trivial. Consequently, for a fixed rank
K, theK generalized Schmidt pairs cannot be found by recursively
minimizing the error function

Jp�1 = W � Fp�1 � upv
H
p F

(33)

with respect toup andvp, for p = 1; 2; � � � ; K, where

Fp�1 = F �

p�1

i=1

uiv
H
i : (34)

However, on comparingJp�1 in (33) with J in (13) we see that for
eachp minimizing Jp�1 involves onlym + n complex parameters
while minimizing J involves K(m + n) parameters. Evidently,
solvingK minimization problems (33) and (34) is numerically more
feasible especially whenF is of high dimension, which is often the
case in filter design applications. Of course the resulting rank-K

approximation so obtained offers only a suboptimal solution to the
WLRA problem.

Quasi-Schmidt Pairs:The up and vp that minimize (33) can be
obtained by considering a special case of minimizingJ in (13) with
K = 1 andF replaced byFp�1 defined by (34). It can readily be
shown that the optimalup and vp satisfy

(W � Fp�1; w)vp =  
(p)
r up (35)

(W � Fp�1; w)
H
uu =  

(p)
c vp (36)

where

Fp�1;W =W � Fp�1 (37)

 
(p)
r =

kWT
r1 � vpk

2
0

.. .
0 kWT

rm � upk
2

(38)

 
(p)
c =

kWT
c1 � upk

2
0

. ..
0 kWT

cn � upk
2

: (39)

The analogy between (35), (36) and (21), (22), and the analogy
between (35), (36) and (6), (7) are evident. In fact, with a trivial
weighting W (say all its entries are equal toc), we haveW �

Fp�1;W = c2Fp�1;  
(p)
r = c2kvpk

2I, and (p)c = c2kupk
2I. Hence

(35) and (36) become

Fp�1vp = kvpk
2
up

F
H
p�1up = kupk

2
vp

which means thatup=kupk and vp=kvpk is the first Schmidt pair
of Fp�1, therefore thepth Schmidt pair ofF ! It is for this reason
we shall callup=kupk; vp=kvpk, characterized by (35), (36)the kth
quasi-Schmidt pair. To compute the quasi-Schmidt pairs, Algorithm
1 is applicable with (24a) and (24b) replaced by

p
(k)

=  
(p)
r W; v

(k)
p )

�1
W � Fp�1;W v

(k)
p (40a)

q
(k)

=  
(p)
c W;u

(k)
p

�1
(W � Fp�1;W )

H
u
(k)
p (40b)

and (25a) and (25b) replaced by

u
(k+1)
p = �u

(k)
p + (1� �)p

(k) (41a)

v
(k+1)
p = �v

(k)
p + (1� �)q

(k) (41b)

respectively.
Generalized versus Quasi-Schmidt Pairs—Some Comparisons:

Since both (p)r and  
(p)
c are diagonal matrices, it can readily

be verified that the overall computation complexity for evaluating
K quasi-Schmidt pairs using the recursive scheme (40), (41) is

K

i=1
k�i (3mn + m + n) flops where k�i denotes the number

of iterations used to compute theith quasi-Schmidt pair. Let
k� = maxfk�i ; i = 1; � � � ; Kg, then the overall computation
complexity is upper-bounded byk�K(3mn+m+n) flops which is
substantially less than that of computingK generalized Schmidt pair
(requiringk�K3

(m3
+n3)=3 flops) even for moderatem; n, andK.



654 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 44, NO. 7, JULY 1997

The improved computation efficiency is, however, at the expense of
quality degradation. In what follows we give a qualitative account of
how the degradation is related to the weightingW and parameterK.
If we denote theK quasi-Schmidt pairs bŷui; v̂i; i = 1; � � � ; K,
then

min W � F �

K

i=1

uiv
H
i

� min W � F � û1v̂
H
1 �

K

i=2

uiv
H
i

� min W � F � û1v̂
H
1 � û2v̂

H
2 �

K

i=3

uiv
H
i ht

� � � �

� min
u ;v

W � F �

K�1

i=1

ûiv̂
H
i � uKv

H
K

= W � F �

K

i=1

ûiv̂
H
i : (42)

The minimum of the left-end term in (42) is achieved by theK
generalized Schmidt pairs while the minimum of the term on the
right-hand side of the last inequality in (42) is achieved by theK

quasi-Schmidt pairs, and there areK � 1 inequalities in between.
As was noted in Sections II-B and II-D-1, with a trivialW the
generalized Schmidt pairs and quasi-Schmidt pairs for any givenK

are identical and equal to the conventional Schmidt pairs. In such a
case, all inequalities in (42) becomes equality. Stating it in another
way, the inequalities would holdstrictly if W is nontrivial andF is
nonsparse in the sense thatF �W differs from cF for any constant
C. Under these circumstances (42) clearly indicates that the quality
degradation of the suboptimal solution deepens with parameterK

and the nontriviality of weightingW .

III. D ESIGN OF LINEAR PHASE FIR 2-D FILTERS USING WLRA

A. The Method

Let F be the sampled frequency response matrix obtained by
sampling the desired frequency response. If linear phase response is
required in the design, one only needs to sample the desired amplitude
response of the filter since the linearity of the phase response is
guaranteed if each 1-D FIR filter involved is of linear phase (this
will become more apparent shortly). In this caseF is a real-valued
matrix. Furthermore, if the desired filter is quadrantally symmetric, a
quarter (say the lower-right block) ofF is sufficient to characterize
the whole matrix. So for a typical sampling density of 61� 61 over
the baseband, one can work on the WLRA problem for a real matrix
of 31 � 31 if the filter to be designed is quadrantally symmetric.
Denoting this portion ofF andW by F andW again, the next step
is to determine an adequate value ofK. Without loss of generality
we assume that the entries ofW fall over interval [0, 1]. It follows
that for any matrixF̂K of rank K.

kW � (F � F̂K)kF � kF � F̂KkF

which leads to an upper bound for the WLRA problem as

min
rank(F̂ )=K

kW � (F � F̂K)kF � min
F̂

kF � F̂KkF

=

r

i=K+1

�
2
i (43)

wheref�i : i = K +1; � � � ; rg are the lastr�K singular values of
F . Obviously, this upper bound is quite tight ifW does not severely

Fig. 1. Amplitude response of the (29, 29) FIR filter.

deviate from a trivial weighting. One can then choose aK such that
(

r

i=K+1
�2i ) is small. For the cases whereW is far from trivial,

theK determined above can serve as a preliminary choice ofK and
a smallerK might be reached by a trial-and error approach.

Having determined the value ofK, Algorithm 1 can be used to find
theK generalized or quasi-Schmidt pairs. For anF of dimension 31
� 31, typical number of nonzero singular values are in the range of
10 to 20. IfK = 10 is chosen, the evaluation of theK generalized
Schmidt pairs involves inversion of matrices whose size will be as
large asK(m+ n) = 620. On the other hand, the determination of
theK quasi-Schmidt pairs can be accomplished byK subproblems
each of which has onlym+n = 62 parameters to work with. In any
event, once theK generalized or quasi-Schmidt pairs are computed,
the rankK approximation ofF is given by

FK =

K

i=1

�iuiv
H
i (44)

where the vectors�i ui and �i vi are used as the desired 1-D
frequency responses, and linear phase, FIR and transfer functions
fi(z1) and gi(z2) can be designed whose frequency responses

approximate�i ui and�i vi, respectively. The linear-phase, FIR 2-D
transfer function is then given by

H(z1; z2) =

K

i=1

fi(z1)gi(z2): (45)

B. A Design Example

In this section, the usefulness of the WLRA will be illustrated
by designing a circularly symmetric, linear phase, lowpass, FIR 2-D
filter. The normalized passband and stopband of the filter are!p =

0.25 and!s = 0.35. The desired amplitude response is sampled
in a density of 61� 61 over the baseband, and a quarter of the
sampled amplitude response matrix is used in the design. The design
specifications are that the maximum ripples of the filter in both
passband and stopband are less than 0.03. If we use the conventional
SVD method [13], then the maximum ripples of a (29, 29) FIR
filter are 0.0418 and 0.0181, respectively. The design accuracy in
the passband does not meet the requirement while the filter shows
a better-than-enough design accuracy in the stopband. Under these
circumstances one might expect to be able to design a (29, 29) FIR
filter with an adequate weightingW to meet the design requirement.
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The weighting matrix used here is a sampled version of the function

w(!1; !2) =
1:2; 0:225 � w2

1
+ w2

2
� 0:285

1; otherwise

where the heavier weights have been given to the region near the
passband edge since it is this region larger design error occurs as we
have often seen in the conventional SVD-based designs.

Using the suboptimal WLRA algorithm described in Section II-D,
twelve quasi-Schmidt pairs are computed and then used to design
1-D transfer functionsfi(z1) and gi(z2). Since both the sampled
amplitude response matrixF and weighting matrixW are symmetric,
fi(z1) and gi(z2) have the same coefficients. WithK = 12, the 2-
D transfer function can be found using (42). The maximum ripples
of the filter designed in the passband and stopband are 0.0296 and
0.0294, respectively. The amplitude response of the filter is depicted
in Fig. 1.
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