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dual cellular neural network architecture (CNNDIEEE Trans. Circuits Wweak point of the methoq Is that it t_reats all e_ntrles of the sampled
Syst. 1| vol. 40, pp. 223-231, Mar. 1993. frequency response matrequally, which could in some cases lead

to degraded designs. In order to discriminate between the important
and unimportant portions of the matrix, we seek to find a low-rank
approximation ofF’ such that for a fixeds” with 1 < K < r, the

rank K matrix

Weighted Low-Rank Approximation of General Fr = imuwﬁ 4)
Complex Matrices and Its Application Py '

in the Design of 2-D Digital Filters best approximate$’ in the weightedFrobenius norm sense. That is

W.-S. Lu, S.-C. Pei, and P.-H. Wang min  |[|Wo (F — Fr)|lr =

rank( Fp)=K

Wo (F—Fx)llr (5

Abstract—in this brief we present a method for the weighted low-rank where V" is a Welghtmg ma.'t”.x W.Ith th? S?'me,sme .ES .W oV
approximation of general complex matrices along with an algorithmic denotes the entrywise multiplication M_ with } » which is often
development for its computation. The method developed can be viewed as termed as Hadamard or Schur product in the literature. In the rest of
an extension of the conventional singular value decomposition to include the brief, we shall call (4), (5) a weighted rafkapproximation off".

a nontrivial weighting matrix in the approximation error measure. It is In the literature the weighted low rank approximation (WLRA)

shown that the optimal rank-K weighted approximation can be achieved . . h .
by computing K generalized Schmidt pairs and an iterative algorithm problem was considered by Shpak [16] in a filter design context for a

is presented to compute them. Application of the proposed algorithm to real matrixF’. His approach is to treat (5) as a numerical minimization
the design of FIR two-dimensional (2-D) digital filters is described to problem so that the conventional optimization techniques [17], [18]
demonstrate the usefulness of the algorithm proposed. can be used to find a solution. However, the optimization involved
Index Terms—2-D digital filters, singular value decomposition. requires a large amount of computation, particularly whenand
v; are of high dimension. The objectives of this brief are twofold.
First, we investigate in Section Il the WLRA for a general complex
I. INTRODUCTION matrix F € C™*". It is shown that for a fixedk (which is the
As one of the basic and important tools in numerical linear algebr@nk of Fix approximatingF'), the WLRA can be characterized by
the singular value decomposition (SVD) [1]-[3] has found numerous generalized Schmidt pairs which are nonlinear extension of the
scientific and engineering applications in the past. An excelleg@nventional Schmidt pairs obtained by the SVDFof We present
outline on its applications in linear algebra and linear systems can iterative algorithm for numerical computation of the generalized
be found in [4]. Sample applications of the SVD in automati&chmidt pairs. Convergence and computation complexity issues of the
control, robotics, image processing, reduced-rank signal processialgorithm are addressed. Also proposed in Section Il is a suboptimal
and design of two-dimensional (2-D) digital filters can also be fourgplution to the WLRA problem. This suboptimal WLRA (S-WLRA)
in [5]-{16]. In a filter design context, the SVD method [10]-{16]is obtained by computing one pair of vectars andv; at a time,
starts with a complex matriF' obtained by sampling the desiredleading to considerably reduced computation complexity and hence
frequency response, and the application of SVD¥tallows one to offers a feasible solution to those approximation problems where
decompose a complex 2-D design task into a set of simple 1-D destjg matrix ' is of high dimension. As the second objective of the
tasks with guaranteed design accuracy. An important property of théef, the S-WLRA is applied to design FIR 2-D digital filters. In
SVD utilized in this regard is that the SVD df of rank » offers Section Ill, the S-WLRA is applied to design linear phase FIR 2-
a series of optimal low-rank approximations Bfin both Euclidean D filters. An example is included to illustrate the design algorithm

and Frobenius norm sense. That is, if and to compare the WLRA-SVD method with the conventional SVD
r method.
F=uxv" = ZO’,‘,U,‘,?)ZT (2)
=1

Il. WEIGHTED Low-RANK APPROXIMATION OF COMPLEX MATRICES
is a SVD of F, then forany K’ between 1 and,

min ||F = Fx|lo.r = |F = Fr|la.r @) A. Preliminaries
rank(Fg)=K The singular value decomposition of a rectangular complex matrix
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V =[vi--vr---vy], (1) implies that forl <7 < r
Fuv;, = o;u; (6)
Flu; = o, (7)
with

®)

In the literature, the first pair of vectofs::, v1 } associated with the
largest singular value; is called the Schmidt pair of' [20], [21].

lwilla = flviflz = 1

For the sake of convenience we, in the rest of the brief, shall call

{u;, vi} (for 1 < i < r) theith Schmidt pair ofF’. From (1) we see

that ther Schmidt pairs along with the associated singular values g

sufficient to characterize matrix’

.

H

F= E oiuv;.
i=1

9)

From a filter-design point of view, the following form of the SVD

is often used

(10)

.

. H

F = E U; U;
i1

1 L .
wherea; = o2 w; andd; = o2 v; can be interpreted as 1-D frequency
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B. Weighted Low-Rank Approximation of a Complex Matrix

In what follows we show that the optimal solution to the weighted
rank-K” approximation of a complex matrik’, which is defined by
(4) and (5), is characterized by generalized Schmidt pairs that can
be viewed as a nonlinear version of (6) and (7). For a given complex
matrix F € C™*" and a real weightingy € R"*", we consider
the error function for the rank approximation problem given by
K
Wo <F - Zulv,ﬂ>
=1

2

J= (13)

B
noting

Fy =WoF
and

Ri=Wo (uiqu)

(13) can be written as
J= tr[(z Rf{) (ZRi)] - tr(Fﬁ ZRi)
— tr[(z RZT)FW] +c

responses wheR' is a sampled 2-D frequency response [14], [15].where tr[-] denotes the trace of the matrix involved, ands a
An important property of SVD is the Eckart-Young theorem [2Fonstant. Computing the gradient.bfwith respect to these variables

described by (2) and (3). This means thakifpairs of 1-D transfer

is straightforward but tedious, and is omitted here. By letting the

functions #;(z1) and g;(z2) are found such that the sampled fregradient be zero, we obtain the following system of nonlinear

quency response matrix frotf) (z;)g:(z2) perfectly matchesi; o/,

equation (14) and (15) as shown at the bottom of the page, where

then> " | fi(z1)g:(22) would be an optimal design in the Euclidearandv are them K- andn K -dimensional column vectors defined by

or Frobenius norm sense when the number of parallel sections used
is limited to K". Another useful property of the SVD is that the SVD

of matrix F — w0 is

F — 71,11,'1” =U 21‘/'1”
where

and Vi =[vz---

le:[UQ"'ur"'] UT"']

(5] U1

and v =

(16)
UK UK

respectively,P, and P, are the permutation matrices of sizel{’ x
mK andnK x nK such that

w11 [ V11 7]
are column-orthogonal, and : :
. Yo 0 5 1 WK1 UK1
D=1 ol 2r = diag{oa,..., 0.} Pou = . Pov = .
Consequently, the Eckart—-Young theorem implies that U1im Uin
min H(F_uwln)_FKHQF: HF_FT(\}) ‘2}? (11)
rank(Fg)=K ’ ’ Lot /oo Lv s J
where with u;; andv;; representing thgth entry ofu; andv;, respectively,
K+l L+l al"? and b are the inner products defined b
FP =3 sl = 3w (1z) kA nerp d
4 : (ry) _ T T .
i=2 i=2 ayt! = (w0 vk, wyowvi) a7)
for 1 < K <r — 1. It follows from (2), (3) and (11), (12) that the and
pth Schmidt pair ofF" can be obtained as tHfest Schmidt pair of
F - Zf;l ol bgfil) = (Wer © Uk, Wei O U;) (18)
a&?) CL(I;}) 0 . 0
e (r2) (r2)
(Wo Fw)v, = 0 0 @i L 0 0 P2 P u (14)
0 o ) algp)
L I 0
. (e2) (e2)
(W o Fw)Hui _ 0 0 by, by 0 0 P2y, v (15)
0 b bl
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with w,; andw,.; being thelth row and column of#”, respectively. with
Further, by defining block diagonal matrix
K blocke U(z)=ax+ (1 —a)®(x). (28b)
. T L . .
¢ = diag {WoFw,...,Wo Fy } (19) By (28a) we see that if the sequenge® . k = 0,1,...} converges
to vector, sayz*, thenz* is afixed pointof function ¥(z), i.e.,

and U(z*) = 2*. By (28b), this fixed point satisfies
2’1/’,,1 WYer
- and .= (20) ¥ =azx" + (1-— a')(I)(x*)
Yk ek which gives
the K sets of (14) and (15) with=1..., I’ can be put together as
" = d(a”
ov = Yru (21) =)
0w = v (22) From (27) it follows that:* = [«*7 +*T]” satisfies (23) and therefore

) ) ) _contains K generalized Schmidt pairs.
Equations (21) and (22) are important as they characterize the optimal g fficient condition for the convergence {m(k)} generated by

w and v, and therefore the optimal; andv; (for ¢ = 1.....K) (2g) is the existence of a constafite (0,1) and a positive integer
via (16) that minimize the error functiod. As can be seen from 1 ¢,ch that

(19), matrix¢ is independent of parametetsand v. However, the

nonzero entries in, and. are in general dependent an andv; 18(+™) — @F )| < 8|« = 25 (29)
guadratically as is evidenced from (14), (15), (17), and (18). In spite
of the nonlinear nature of (21), (22), it is worthwhile to notice théor & > L, where|| - | denotes the Euclidean norm. To show this,

analogy between (21), (22), and (6), (7). As a matter of factVif note that by (28b) and (29) we have fbr> L
is a trivial weighting with all entries being the same constant, it can

readily be verified that théa;, ;,i = 1,..., K} obtained from the 19 (") = (@) < Al = 2470 (30)
SVD of F offers a solution to (21) and (22). It is for this reason ) ) ) )
that we shall in the sequel caki; /||u; ||, vi/||lvi]l, i = 1,.... K} yvhere v = a4+ (1 —a)f < 1. In conjunction with (28a), (30)

determined by (21), (22), and (16) thith generalized Schmidt pair Implies that
for the givenF, W, and K. [ (2®) = T V)| < 4L = D)),

C. Computation of Generalized Schmidt Pairs So for sufficiently large integers: and» with m > n > L, we have
A Recursive Computation Scheme and a Convergence Analysis: S

obtain the X' generalized Schmidt pairs, tHer + »)K nonlinear ”_T(m) _ }r(n)H < Z ”'r(n+z+1) _ m(n+/)”

equations defined by (21) and (22) need to be solved. In what follows ' - '

. . =1
we propose a scheme for recursively computingndv. It starts by

m—n—1
writing (21) and (22) as < Z ,y,n+sz+1”Jr(L) _ m(Lfl)”
‘= LL‘T_] (u./ v)d)v (23a) ii0L+l m—L+1
v =1 (1L,1))G§TI'ZL (23b) 7 : - ||x(L) _ :U(L—l)”
—

respectively, where the dependence«of and ¢). on v and v is

explicitly indicated. With an initiak(®), +(%), (23) suggests a schemewhich approaches to zero when,n — oc. Therefore{z"'} is

to compute a Cauchy sequence in a finite-dimensional Euclidean space, whose
_ . convergence is guaranteed.

B =1 (k) (k) o (K) . .
P =g (w0 o (24a) Furthermore, by (28a) we see that (30) is equivalent to
F) — = P By 7T, (B) 24b

q Ve (0o ( ) ||x(k+1) _ x(k)H < 'Y||l?(k) _ :c(k_1)||

and then to obtain:**", »(*+1) through a linear combination of

w® () with p(kf)7 q(k) as ie.,
WY = 0 4 (1- ck)p(k) (25a) o<y 31)
oD = P 4 (1-— az)q(k) (25b) B
, , for k > L, wherey; is the ration, = [|=*+Y — 20 /|j2*) -
wherea € (0,1) is a relaxation parameter. Denote +*=D]|. In words, we conclude that the sequer{faé*’} generated
w _ [ut® from (24) and (25) converges if the ratin. has a less-than-unity
o= {u(’“) } (26) upper bound for: > L where is a positive integer.

Functions® and ¥ satisfying (29) and (30) witl¥ < 1 andy < 1
are calledcontraction mappingsWith this term the above analysis
|:p(k):| _ { 0 dﬁr_1(u(k),'v(k))é:| |:u(""'):| may be summarized as three sufficient conditions, each of which
= _ §
Yo (

Equation (24) can be expressed as

q® u®) oyt 0 v ensures the convergence of sequefie€”} generated recursively
= (V). 27) by (24), (25):
o _ ) 1) ®(x) is a contraction mapping;
Combining (25) with (26) gives 2)  ®(x) is a contraction mapping;

2D — \I/(;L'(k)) (28a) 3) 7 has a less-than-unity upper bound fo> L.
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As a part of the convergence analysis the recursive scheme (24ith respect tow,, andv,, forp = 1,2,---, K, where
(25) was applied to a large number of randomly generated matrices 1
F gf various sizeg 1, <m,n < 4.0) along Wlth randpmly selected Fyy=F— Z“ﬂ’i”- 34)
weighting matrice3¥ whose entries are uniformly distributed on [0, P

1]. The rank parametek in the test varies from 1 tmin(n,m). In . . . .
every case of the test, the convergence of the recursive computam)%wever! on _cpmparlng_p_1 In (33) with ./ in (13) we see that for
ﬁachp minimizing .J,—: involves onlym + n complex parameters

scheme (24), (25) was confirmed by verifying sufficient c:Ondmowhile minimizing .J involves K (m + n) parameters. Evidently,

(31). Although further investigation on the specific structuredof ina K minimizati bl 33) and (34) | icall
and® as related to these sufficient conditions remains an interesti E%Vmg « minimization problems (33) and (34) is numerically more

issue, this numerical test offers the confidence to use it as a feasi snb_le e_spemally wheR IS Of high dimension, which is _often Fhe
means to compute generalized Schmidt pairs case in filter design applications. Of course the resulting d&nk-

We now summarize the proposed recursive computation Sche&){)rommatlon so obtained offers only a suboptimal solution to the

. : RA problem.
asglzlo,?:%c;rrlltglm L Quasi-Schmidt Pairs:The u, andwv, that minimize (33) can be

lect initial @ andv© and B obtained by considering a special case of minimiziham (13) with
Step 1} Select |n|t|g)u an(k)u ~and setk = 0. K =1 and F replaced byF,_, defined by (34). It can readily be
Step 2} Computep(k;rgndq Pl (24). shown that the optimak, and v, satisfy
Step 3} Computeu and ' using (25).
Step 4} Define +**Y by (26). If ||«**Y — »(®)|| is less than (WoF, 1,w)v, = 1/')51’)71,]) (35)
a prescribed tolerance, output= u* ", v = 1), (WoFporw) u, =P, (36)
and stop. Otherwise s&t= k+1 and repeat from Step 2.
Computation ComplexityThe most expensive thing in imple- Where
mer_mng Algorlthm_ listo computp and¢'™ using (2_4). This is Fyrw=WoF,_, 37)
equivalent to solving the two linear systems of equations

(W5 00, 0
Voip = bo (32a) Y = (38)
Yerq = bu (32b) L0 W, 0 up?
MWL o 12
for P and q, Whel’e’d’,«k — 'Tl’r(’ll(k)./v(k)), '@L‘ck — ﬂ’c(u(k), U(k)), . ||‘l(‘1 o Up“ . 0
b, = 6v'®, andb, = ¢u'®). At this point it is important to note Ye! = g - : (39)
that matrices¥. and., which are characterized by (14), (15), (17), L 0 (|W2 0wyl

and (18), are positive definite Herm.itian matrices. It is known [3] th_a[the analogy between (35), (36) and (21), (22), and the analogy
such systems can be solved by using stable Cholesky decompos%gglveen (35), (36) and (6), (7) are evident. In fact, with a trivial

of the coefficient matr.ix, and requires /3 flops (rather thard® /3 weighting W (say all its entries are equal tg), we haveW o
flops for a general linear system) whededenotes the system’sF — 2F XN T () 2 2
. . : . 1w = " Fp_1, Yy A |lvp|I? I, ande)e c||up||*I. Hence
dlrlnenjslon.. Hence, solving system (32a) and (32b) requires ab?élé) and (36) become
K?(m® +n*)/3 flops in each iteration wheR™ generalized Schmidt
pairs are sought. Fy_yvp, = |Jup])?uy
The overall computation complexity is therefok€ K*(m?® + FHE vy = [la*o
n*)/3 flops wherek™ is the number of iterations used. There are pmtie PR
two factors in the algorithm implementation that are particulariwhich means that:,/||u,| and v,/||v,|| is the first Schmidt pair
relevant to reducing*. The first factor is the selection of the initial of F;,—, therefore thepth Schmidt pair ofF'! It is for this reason
vectorsu'® and v(”). Since a generalized Schmidt pair becomes we shall callu, /||u,||, v,/||v,||, characterized by (35), (3&he kth
conventional Schmidt pair wheW is a trivial weighting, one may quasi-Schmidt pairTo compute the quasi-Schmidt pairs, Algorithm
use the conventional Schmidt [:;aira@) ?ndv(o) for the nontrivial 1 is applicable with (24a) and (24b) replaced by
weighting case. This choice of” andv(®) considerably reduces the 5 ) O A &
value ofk* compared to a randomly choseff’ andv(®) especially P = [ (W] (W o B ) (40a)
when the variations in the entries ®F from a trivial one is not ¢ = [P (W) T W o By w)™ul? (40b)
large. The second factor is the choice of the relaxation parameter
It is observed from (25) that the updatetf™" andv(“*) contains 2nd (25a) and (25b) replaced by
1002% “old” «'*) and v*). Thus a smallerx would in general WD = 0l 4 (1 — a)p® (41a)
lead to a largek™. This observation was confirmed in our numerical

(k1) _ (k) k)
evaluation or the proposed algorithm, where cametween 0.5 and v =avp” 4 (1-a)g (41b)
0.9 is often found suitable. respectively.
Generalized versus Quasi-Schmidt Pairs—Some Comparisons:
D. A Suboptimal Solution of the WLRA Problem Since bothn/;(rp) and lpﬁp) are diagonal matrices, it can readily

Unlike the SVD for which thepth Schmidt pair ofF is equal to be verifi_ed that_ the o_verall_ computation gomplexity for evaluating
the first Schmidt pair of’ — 5~ o;u,v/’, the generalized Schmidt & quasi-Schmidt pairs using the recursive scheme (40), (41) is
pairs defined by (21) and (22) do not in general possess this propelty—1 &/ (3mn + m + n) flops where s} denotes the number
unless the weighting?" is trivial. Consequently, for a fixed rank Of iterations used to compute thigh quasi-Schmidt pair. Let

K, the K generalized Schmidt pairs cannot be found by recursively = max{ki, ¢ = 1,---, K}, then the overall computation
minimizing the error function complexity is upper-bounded by K (3mn + m + n) flops which is
substantially less than that of computihggeneralized Schmidt pair
Jpo1 = |[Wo (Fpmr —upry))| (33) (requiringk* K*(m®+n*)/3 flops) even for moderate, n, andK.
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The improved computation efficiency is, however, at the expense of o
quality degradation. In what follows we give a qualitative account of

how the degradatifm is rglated tp the yveighthand parametek . 1 \
ll;“\g]e denote thek quas:Schmldt pairs byt;, ¢, i = 1,---, K, 08 J / ’ ‘ \\{\\\\
min (|Wo | F — wiv; '
=T K i=1 . 0.4 \
< :1;1111K Wo [(F—iif) - ZQuLlHU o.(2) /;lllilllli lll"’"“‘“““““ \‘N}\\\\\\ w-
< l?mK Wo [(F =il —idy') - ;“ i hf} 05 ,!!!!L ““‘ ‘\\“\\é\\é\g\‘\é 0.5
; we (F - Z) ) } 05 05

. Fig. 1. Amplitude response of the (29, 29) FIR filter.

(42)

K
W o <F - ZLLL“> .

The minimum of the left-end term in (42) is achieved by the deviate from atr|V|aI weighting. One can then choosE a&uch that
generalized Schmidt pairs while the minimum of the term on th&_;_ ., o, 2)7 is small. For the cases wheF¥ is far from trivial,
right-hand side of the last inequality in (42) is achieved by fie the K determined above can serve as a preliminary choick eind
quasi-Schmidt pairs, and there aké — 1 inequalities in between. a smallerkK” might be reached by a trial-and error approach.
As was noted in Sections II-B and II-D-1, with a trividl” the Having determined the value &f, Algorithm 1 can be used to find
generalized Schmidt pairs and quasi-Schmidt pairs for any given the K generalized or quasi-Schmidt pairs. ForArof dimension 31
are identical and equal to the conventional Schmidt pairs. In suchxa31, typical number of nonzero singular values are in the range of
case, all inequalities in (42) becomes equality. Stating it in anoth&d to 20. If K = 10 is chosen, the evaluation of tiié generalized
way, the inequalities would holstrictly if 1¥ is nontrivial andF' is  Schmidt pairs involves inversion of matrices whose size will be as
nonsparse in the sense that W differs from cF for any constant large ask'(m + n) = 620. On the other hand, the determination of
C'. Under these circumstances (42) clearly indicates that the qualibhe K quasi-Schmidt pairs can be accomplishedbysubproblems
degradation of the suboptimal solution deepens with parani€ter each of which has only: + » = 62 parameters to work with. In any
and the nontriviality of weightingV'. event, once thé{ generalized or quasi-Schmidt pairs are computed,
the rank I’ approximation ofF’ is given by

I1l. DESIGN OF LINEAR PHASE FIR 2-D HLTERS UsSING WLRA

K
Fi = Zaiuivfi (44)
A. The Method i=1
Let F' be the sampled frequency response matrix obtained by
sampling the desired frequency response. If linear phase responséhgre the vectors; u; and o7 Uz are used as the desired 1-D
required in the design, one only needs to sample the desired ampllt{f@é‘uency responses, and linear phase, FIR and transfer functions
response of the filter since the linearity of the phase responsefi§z1) and 91(0) can, be designed whose frequency responses
guaranteed if each 1-D FIR filter involved is of linear phase (thispproximater? u; anda v;, respectively. The linear-phase, FIR 2-D
will become more apparent shortly). In this caBds a real-valued transfer function is then given by
matrix. Furthermore, if the desired filter is quadrantally symmetric, a
quarter (say the lower-right block) df is sufficient to characterize H(z, ) = Z Filz1)gi(zs). (45)
the whole matrix. So for a typical sampling density of £161 over
the baseband, one can work on the WLRA problem for a real matrix
of 31 x 31 if the filter to be designed is quadrantally symmetricg A Design Example
Denoting this portion of" andW by F' andWW again, the next step
is to determine an adequate value Iof Without loss of generality
we assume that the entries 0f fall over interval [0, 1]. It follows
that for any matrixFx of rank K.

In this section, the usefulness of the WLRA will be illustrated
by designing a circularly symmetric, linear phase, lowpass, FIR 2-D
filter. The normalized passband and stopband of the filtetvgre-

. . 0.25 andw,; = 0.35. The desired amplitude response is sampled
(IWo(F —F)llw <|F = Frllw in a density of 61x 61 over the baseband, and a quarter of the
sampled amplitude response matrix is used in the design. The design

which leads to an upper bound for the WLRA problem as
PP P specifications are that the maximum ripples of the filter in both

mk}%i;l):r( ([Wo(F—Fr)llr < Il;;n |F = Fkllr passband and stopband are less than 0.03. If we use the conventional
‘ L SVD method [13], then the maximum ripples of a (29, 29) FIR
" L\ 2 filter are 0.0418 and 0.0181, respectively. The design accuracy in
= < Z Jf) (43)  the passband does not meet the requirement while the filter shows
=K +1

a better-than-enough design accuracy in the stopband. Under these
where{s; :i= K +1,---.r} are the last — K singular values of circumstances one might expect to be able to design a (29, 29) FIR
F'. Obviously, this upper bound is quite tightiif does not severely filter with an adequate weightiny” to meet the design requirement.
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The weighting matrix used here is a sampled version of the functiof8] A. K. Jain, Fundamentals of Digital Image ProcessingEnglewood

1.2,

0.225 <
'LU(WDWQ):{l 5 <

otherwise

w? +w? <0.285

&l

where the heavier weights have been given to the region near {flw%]

passband edge since it is this region larger design error occurs asjy4g

have often seen in the conventional SVD-based designs.

Using the suboptimal WLRA algorithm described in Section II-D,
twelve quasi-Schmidt pairs are computed and then used to desigfl

1-D transfer functionsf;(z1) and g;(z»). Since both the sampled

amplitude response matriX and weighting matri¥¥” are symmetric,
fi(z1) and g;(z2) have the same coefficients. Wifki = 12, the 2-

[13]

D transfer function can be found using (42). The maximum ripples

of the filter designed in the passband and stopband are 0.0296 &

0.0294, respectively. The amplitude response of the filter is depicted

in Fig. 1.
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