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Evolutionary dynamics have been traditionally studied in the
context of homogeneous or spatially extended populations1–4.
Here we generalize population structure by arranging individ-
uals on a graph. Each vertex represents an individual. The
weighted edges denote reproductive rates which govern how

often individuals place offspring into adjacent vertices. The
homogeneous population, described by the Moran process3, is
the special case of a fully connected graph with evenly weighted
edges. Spatial structures are described by graphs where vertices
are connected with their nearest neighbours. We also explore
evolution on random and scale-free networks5–7. We determine
the fixation probability of mutants, and characterize those
graphs for which fixation behaviour is identical to that of a
homogeneous population7. Furthermore, some graphs act as
suppressors and others as amplifiers of selection. It is even
possible to find graphs that guarantee the fixation of any
advantageous mutant. We also study frequency-dependent selec-
tion and show that the outcome of evolutionary games can
depend entirely on the structure of the underlying graph. Evolu-
tionary graph theory has many fascinating applications ranging
from ecology to multi-cellular organization and economics.

Evolutionary dynamics act on populations. Neither genes, nor
cells, nor individuals evolve; only populations evolve. In small
populations, random drift dominates, whereas large populations

Figure 1 Models of evolution. a, The Moran process describes stochastic evolution of a

finite population of constant size. In each time step, an individual is chosen for

reproduction with a probability proportional to its fitness; a second individual is chosen for

death. The offspring of the first individual replaces the second. b, In the setting of

evolutionary graph theory, individuals occupy the vertices of a graph. In each time step, an

individual is selected with a probability proportional to its fitness; the weights of the

outgoing edges determine the probabilities that the corresponding neighbour will be

replaced by the offspring. The process is described by a stochastic matrix W, where w ij

denotes the probability that an offspring of individual i will replace individual j. In a more

general setting, at each time step, an edge ij is selected with a probability proportional to

its weight and the fitness of the individual at its tail. The Moran process is the special case

of a complete graph with identical weights.
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are sensitive to subtle differences in selective values. The tension
between selection and drift lies at the heart of the famous dispute
between Fisher and Wright8–10. There is evidence that population
structure affects the interplay of these forces11–15. But the celebrated
results of Maruyama16 and Slatkin17 indicate that spatial structures
are irrelevant for evolution under constant selection.

Here we introduce evolutionary graph theory, which suggests a
promising new lead in the effort to provide a general account of how
population structure affects evolutionary dynamics. We study the
simplest possible question: what is the probability that a newly
introduced mutant generates a lineage that takes over the whole
population? This fixation probability determines the rate of evolu-
tion, which is the product of population size, mutation rate and
fixation probability. The higher the correlation between the
mutant’s fitness and its probability of fixation, r, the stronger the
effect of natural selection; if fixation is largely independent of
fitness, drift dominates. We will show that some graphs are
governed entirely by random drift, whereas others are immune to
drift and are guided exclusively by natural selection.

Consider a homogeneous population of size N. At each time step
an individual is chosen for reproduction with a probability pro-
portional to its fitness. The offspring replaces a randomly chosen
individual. In this so-called Moran process (Fig. 1a), the population
size remains constant. Suppose all the resident individuals are
identical and one new mutant is introduced. The new mutant has
relative fitness r, as compared to the residents, whose fitness is 1. The
fixation probability of the new mutant is:

r1 ¼
12 1=r

12 1=rN
ð1Þ

This represents a specific balance between selection and drift:
advantageous mutations have a certain chance—but no guaran-

tee—of fixation, whereas disadvantageous mutants are likely—but
again, no guarantee—to become extinct.

We introduce population structure as follows. Individuals are
labelled i ¼ 1, 2, …N. The probability that individual i places its
offspring into position j is given by w ij.

Thus the individuals can be thought of as occupying the vertices
of a graph. The matrix W ¼ [w ij] determines the structure of the
graph (Fig. 1b). If w ij ¼ 0 and wji ¼ 0 then the vertices i and j are
not connected. In each iteration, an individual i is chosen for
reproduction with a probability proportional to its fitness. The
resulting offspring will occupy vertex j with probability w ij. Note
that W is a stochastic matrix, which means that all its rows sum to
one. We want to calculate the fixation probability r of a randomly
placed mutant.

Imagine that the individuals are arranged on a spatial lattice that
can be triangular, square, hexagonal or any similar tiling. For all
such lattices r remains unchanged: it is equal to the r1 obtained for
the homogeneous population. In fact, it can be shown that if W is
symmetric, w ij ¼ wji, then the fixation probability is always r1. The
graphs in Fig. 2a–c, and all other symmetric, spatially extended
models, have the same fixation probability as a homogeneous
population17,18.

There is an even wider class of graphs whose fixation probability
is r1. Let Ti ¼ Sj w ji be the temperature of vertex i. Avertex is ‘hot’ if
it is replaced often and ‘cold’ if it is replaced rarely. The ‘isothermal
theorem’ states that an evolutionary graph has fixation probability
r1 if and only if all vertices have the same temperature. Figure 2d
gives an example of an isothermal graph where W is not symmetric.
Isothermality is equivalent to the requirement that W is doubly
stochastic, which means that each row and each column sums to
one.

If a graph is not isothermal, the fixation probability is not given

Figure 2 Isothermal graphs, and, more generally, circulations, have fixation behaviour

identical to the Moran process. Examples of such graphs include: a, the square lattice;

b, hexagonal lattice; c, complete graph; d, directed cycle; and e, a more irregular

circulation. Whenever the weights of edges are not shown, a weight of one is distributed

evenly across all those edges emerging from a given vertex. Graphs like f, the ‘burst’, and

g, the ‘path’, suppress natural selection. The ‘cold’ upstream vertex is represented in

blue. The ‘hot’ downstream vertices, which change often, are coloured in orange. The

type of the upstream root determines the fate of the entire graph. h, Small upstream

populations with large downstream populations yield suppressors. i, In multirooted

graphs, the roots compete indefinitely for the population. If a mutant arises in a root then

neither fixation nor extinction is possible.
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by r1. Instead, the balance between selection and drift tilts; now to
one side, now to the other. Suppose N individuals are arranged in a
linear array. Each individual places its offspring into the position
immediately to its right. The leftmost individual is never replaced.
What is the fixation probability of a randomly placed mutant with
fitness r? Clearly, it is 1/N, irrespective of r. The mutant can only
reach fixation if it arises in the leftmost position, which happens
with probability 1/N. This array is an example of a simple popu-
lation structure whose behaviour is dominated by random drift.
More generally, an evolutionary graph has fixation probability

1/N for all r if and only if it is one-rooted (Fig. 2f, g). A one-rooted
graph has a unique global source without incoming edges. If a graph
has more than one root, then the probability of fixation is always
zero: a mutant originating in one of the roots will generate a lineage
which will never die out, but also never fixate (Fig. 2i). Small
upstream populations feeding into large downstream populations
are also suppressors of selection (Fig. 2h). Thus, it is easy to
construct graphs that foster drift and suppress selection. Is it
possible to suppress drift and amplify selection? Can we find
structures where the fixation probability of advantageous mutants
exceeds r1?
The star structure (Fig. 3a) consists of a centre that is connected

with each vertex on the periphery. All the peripheral vertices are
connected only with the centre. For largeN, the fixation probability

of a randomly placed mutant on the star is r2 ¼ ð12 1=r2Þ=ð12
1=r2N Þ: Thus, any selective difference r is amplified to r2. The star
acts as evolutionary amplifier, favouring advantageous mutants and
inhibiting disadvantageous mutants. The balance tilts towards
selection, and against drift.

The super-star, funnel and metafunnel (Fig. 3) have the amazing
property that for large N, the fixation probability of any advan-
tageous mutant converges to one, while the fixation probability of
any disadvantageous mutant converges to zero. Hence, these popu-
lation structures guarantee fixation of advantageous mutants how-
ever small their selective advantage. In general, we can prove that for
sufficiently large population size N, a super-star of parameter K
satisfies:

rK ¼
12 1=rK

12 1=rKN
ð2Þ

Numerical simulations illustrating equation (2) are shown in Fig. 4a.
Similar results hold for the funnel and metafunnel. Just as one-
rooted structures entirely suppress the effects of selection, super-star
structures function as arbitrarily strong amplifiers of selection and
suppressors of random drift.

Scale-free networks, like the amplifier structures in Fig. 3, have
most of their connectivity clustered in a few vertices. Such networks
are potent selection amplifiers for mildly advantageous mutants (r

Figure 3 Selection amplifiers have remarkable symmetry properties. As the number of

‘leaves’ and the number of vertices in each leaf grows large, these amplifiers dramatically

increase the apparent fitness of advantageous mutants: a mutant with fitness r on an

amplifier of parameter K will fare as well as a mutant of fitness r K in the Moran process.

a, The star structure is a K ¼ 2 amplifier. b–d, The super-star (b), the funnel (c) and the

metafunnel (d) can all be extended to arbitrarily large K, thereby guaranteeing the fixation

of any advantageous mutant. The latter three structures are shown here for K ¼ 3. The

funnel has edges wrapping around from bottom to top. The metafunnel has outermost

edges arising from the central vertex (only partially shown). The colours red, orange and

blue indicate hot, warm and cold vertices.
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close to 1), and relax to r1 for very advantageous mutants (r .. 1)
(Fig. 4b).

Further generalizations of evolutionary graphs are possible.
Suppose in each iteration an edge ij is chosen with a probability
proportional to the product of its weight, w ij, and the fitness of the
individual i at its tail. In this case, the matrix W need not be
stochastic; the weights can be any collection of non-negative real
numbers.

Here the results have a particularly elegant form. In the absence of
upstream populations, if the sum of the weights of all edges leaving
the vertex is the same for all vertices—meaning the fertility
is independent of position—then the graph never suppresses
selection. If the sum of the weights of all edges entering a vertex is
the same for all vertices—meaning the mortality is independent of
position—then the graph never suppresses drift. If both these
conditions hold then the graph is called a circulation, and the
structure favours neither selection nor drift. An evolutionary graph
has fixation probability r1 if and only if it is a circulation (see
Fig. 2e). It is striking that the notion of a circulation, so common in
deterministic contexts such as the study of flows, arises naturally in
this stochastic evolutionary setting. The circulation criterion com-
pletely classifies all graph structures whose fixation behaviour is
identical to that of the homogeneous population, and includes the
subset of isothermal graphs (the mathematical details of these
results are discussed in the Supplementary Information).

Let us now turn to evolutionary games on graphs18,19. Consider, as
before, two types A and B, but instead of having constant fitness,
their relative fitness depends on the outcome of a game with payoff
matrix:

A B

A

B

a b

c d

 !

In traditional evolutionary game dynamics, a mutant strategy A can
invade a resident B if b . d. For games on graphs, the crucial
condition for A invading B, and hence the very notion of evol-
utionary stability, can be quite different.

As an illustration, imagine N players arranged on a directed cycle

 

Figure 4 Simulation results showing the likelihood of mutant fixation. a, Fixation

probabilities for an r ¼ 1.1 mutant on a circulation (black), a star (blue), a K ¼ 3 super-

star (red), and a K ¼ 4 super-star (yellow) for varying population sizes N. Simulation

results are indicated by points. As expected, for large population sizes, the simulation

results converge to the theoretical predictions (broken lines) obtained using equation (2).

b, The amplification factor K of scale-free graphs with 100 vertices and an average

connectivity of 2m with m ¼ 1 (violet), m ¼ 2 (purple), or m ¼ 3 (navy) is compared to

that for the star (blue line) and for circulations (black line). Increasing m increases the

number of highly connected hubs. Scale-free graphs do not behave uniformly across

the mutant spectrum: as the fitness r increases, the amplification factor relaxes from

nearly 2 (the value for the star) to circulation-like values of unity. All simulations are based

on 104–106 runs. Simulations can be explored online at http://www.univie.ac.at/

virtuallabs/.

Figure 5 Evolutionary games on directed cycles for four different orientations. a, Positive

symmetric. The invading mutant (red) is favoured over the resident (blue) if b . c.

b, Negative symmetric. Invasion is favoured if a . d. For the Prisoner’s Dilemma, the

implication is that unconditional cooperators can invade and replace defectors starting

from a single individual. c, Positive anti-symmetric. Invasion is favoured if a . c. The

tables are turned: the invader behaves like a resident in a traditional setting. d, Negative

anti-symmetric. Invasion is favoured if b . d. We recover the traditional invasion of

evolutionary game theory.
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(Fig. 5) with player i placing its offspring into i þ 1. In the simplest
case, the payoff of any individual comes from an interaction with
one of its neighbours. There are four natural orientations. We
discuss the fixation probability of a single A mutant for large N.
(1) Positive symmetric: i interacts with i þ 1. The fixation prob-
ability is given by equation (1) with r ¼ b/c. Selection favours the
mutant if b . c.
(2) Negative symmetric: i interacts with i 2 1. Selection favours the
mutant if a . d. In the classical Prisoner’s Dilemma, these dynamics
favour unconditional cooperators invading defectors.
(3) Positive anti-symmetric: mutants at i interact with i 2 1, but
residents with i þ 1. The mutant is favoured if a . c, behaving like a
resident in the classical setting.
(4) Negative anti-symmetric: Mutants at i interact with i þ 1, but
residents with i 2 1. The mutant is favoured if b . d, recovering the
traditional invasion criterion.

Remarkably, games on directed cycles yield the complete range of
pairwise conditions in determining whether selection favours the
mutant or the resident.

Circulations no longer behave identically with respect to games.
Outcomes depend on the graph, the game and the orientation. The
vast array of cases constitutes a rich field for future study. Further-
more, we can prove that the general question of whether a
population on a graph is vulnerable to invasion under frequency-
dependent selection is NP (nondeterministic polynomial time)-
hard.

The super-star possesses powerful amplifying properties in the
case of games as well. For instance, in the positive symmetric
orientation, the fixation probability for large N of a single A mutant
is given by equation (1) with r ¼ ðb=dÞðb=cÞK21: For a super-star
with large K, this r value diverges as long as b . c. Thus, even a
dominated strategy (a , c and b , d) satisfying b . c will expand
from a single mutant to conquer the entire super-star with a
probability that can be made arbitrarily close to 1. The guaranteed
fixation of this broad class of dominated strategies is a unique
feature of evolutionary game theory on graphs: without structure,
all dominated strategies die out. Similar results hold for the super-
star in other orientations.

Evolutionary graph theory has many fascinating applications.
Ecological habitats of species are neither regular spatial lattices nor
simple two-dimensional surfaces, as is usually assumed20,21, but
contain locations that differ in their connectivity. In this respect, our
results for scale-free graphs are very suggestive. Source and sink
populations have the effect of suppressing selection, like one-rooted
graphs22,23.

Another application is somatic evolution within multicellular
organisms. For example, the hematopoietic system constitutes an
evolutionary graph with a suppressive hierarchical organization;
stem cells produce precursors which generate differentiated cells24.
We expect tissues of long-lived multicellular organisms to be
organized so as to suppress the somatic evolution that leads to
cancer. Star structures can also be instantiated by populations of
differentiating cells. For example, a stem cell in the centre generates
differentiated cells, whose offspring either differentiate further, or
revert back to stem cells. Such amplifiers of selection could be used
in various developmental processes and also in the affinity matu-
ration of the immune response.

Human organizations have complicated network structures25–27.
Evolutionary graph theory offers an appropriate tool to study
selection on such networks. We can ask, for example, which net-
works are well suited to ensure the spread of favourable concepts. If
a company is strictly one-rooted, then only those ideas that
originate from the root will prevail (the CEO). A selection amplifier,
like a star structure or a scale-free network, will enhance the spread
of favourable ideas arising from any one individual. Notably,
scientific collaboration graphs tend to be scale-free28.

We have sketched the very beginnings of evolutionary graph

theory by studying the fixation probability of newly arising mutants.
For constant selection, graphs can dramatically affect the balance
between drift and selection. For frequency-dependent selection,
graphs can redirect the process of selection itself.

Many more questions lie ahead. What is the maximum mutation
rate compatible with adaptation on graphs? How does sexual
reproduction affect evolution on graphs? What are the timescales
associated with fixation, and how do they lead to coexistence in
ecological settings29,30? Furthermore, how does the graph itself
change as a consequence of evolutionary dynamics31? Coupled
with the present work, such studies will make increasingly clear
the extent to which population structure affects the dynamics of
evolution. A
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1

Supplementary Notes

Here we sketch the derivations of eq (1) for circulations and eq (2) for superstars. We

give a brief discussion of complexity results for frequency-dependent selection and the

computation underlying our results for directed cycles. We close with a discussion of

our assumptions about mutation rate and the interpretations of fitness which these

results can accommodate.

Evolution on graphs is a Markov process.

Let G be a graph whose adjacency matrix is given by W . Let P⊂V be the set of

vertices occupied by a mutant at some iteration. P represents a state of the typical

Markov chain EG which arises on an evolutionary graph. Analogously, the states

P = {1, 2, ...N} are the typical states of the Moran process M .

(For two types of individuals, the states of the explicit Markov chain EG are the 2n

possible arrangements of mutants on the graph. The transition probability between

two states P, P′ is 0 unless | P\P′ | = 1 or vice versa. Otherwise, if P\P′ = v∗, then

the probability of a transition from P to P′ is

∑
v∈G\P w(v, v∗)

N+ | P | (r − 1)

where the numerator is the sum of the weights of edges entering v* from vertices

outside P. Similarly, the probability of a transition from P′ to P is

∑
v∈P′ w(v, v∗)

N+ | P′ | (r − 1)

In practice, the resulting matrix is large and not very sparse. Consequently, it can

be difficult to work with directly, and we will not revisit it in the course of these notes.)

We now define the notion of ρ-equivalency.



2

Definition 1. A graph G is ρ-equivalent to the Moran process if the cardinality map

f(P) = | P | from the states of EG to the states of M preserves the ultimate fixation

probabilities of the states. Equivalently, we need

ρ(r,G, P, N) =
1− 1/rP

1− 1/rN

where ρ(r,G, P, N) is the probability that a mutant of fitness r on a graph G, given

any initial population of size P, eventually reaches the fixation population of N. (Note

that this function is often undefined: on most graphs, different initial conditions with

the same number of mutants have different fixation probabilities.)

Note that eq (1) is obtained in the case P = 1.

This shows that the requirement of preserving fixation probabilities leads inevitably

to the preservation of transition probabilities between all the states. In particular, it

means that the population size on G, | P |, performs a random walk with a forward

bias of r, e.g., where the probability of a forward step is r/(r + 1).

Evolution on circulations is equivalent to the Moran process.

We now provide a necessary and sufficient condition for ρ-equivalence to the Moran

process for the case of an arbitrary weighted digraph G. The isothermal theorem

for stochastic matrices is obtained as a corollary. First we state the definition of a

circulation.

Definition 2. The matrix W defines a circulation ↔

∀i,
∑

j

wij =
∑

j

wji

This is precisely the statement that the graph GW satisfies

∀v ∈ G,wo(v) = wi(v)

where wo and wi represent the sum of the weights entering and leaving v.
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It is now possible to state and prove our first result.

Theorem 1. (Circulation Theorem.) The following are equivalent:

(1) G is a circulation.

(2) | P | performs a random walk with forward bias r and absorbing states at {0, N}.
(3) G is ρ-equivalent to the Moran process

(4)

ρ(r,G, P, P ′) =
1− 1/rP

1− 1/rP ′

where ρ(r,G, P, P ′) is the probability that a mutant of fitness r on a graph G given

any initial condition with P mutants eventually reaches a mutant population of P ′.

Proof. We show that (1) → (2) → (3) → (4) → (1).

To see that (1) → (2), let δ+(P) (resp. δ−(P)) be the probability that the mutant

population in a given state increases (resp. decreases), where P⊂V is just the set

of vertices occupied by a mutant, corresponding to the present state. The mutant

population size will only change if the edge selected in the next round is a member

of an edge cut of P, e.g., the head is in P and the tail is not, or vice-versa.

The probability of a population increase in the next round, δ+(P), is therefore just

the weight of all the edges leaving P, adjusted by the fitness of the mutant r. Thus

δ+(P) =
wo(P)r

wo(P)r + wi(P)

where wo and wi represent the sum of the weights entering and leaving a vertex set

P. Similarly,

δ−(P) =
wi(P)

wo(P)r + wi(P)

Dividing, we easily obtain

δ+(P)

δ−(P)
= r

wo(P)

wi(P)

We may also observe that
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wo(P)− wi(P) = (
∑
v∈P

wo(v)−
∑

e|e1,e2∈P

w(e))− (
∑
v∈P

wi(v)−
∑

e|e1,e2∈P

w(e))

= (
∑
v∈P

wo(v)−
∑
v∈P

wi(v))

where the second and fourth sums in the latter equality are over edges whose two

endpoints are in P. Since this vanishes when G is a circulation, we find that on a

circulation

∀P ⊂ V, wo(P) = wi(P)

and therefore

δ+(P)

δ−(P)
= r

for all P.

Thus the population is simply performing a random walk with forward bias r as de-

sired, yielding (1) → (2).

(2) → (3) follows immediately from the theory of random walks.

It is easy to see that (3) → (4) by conditional probabilities. We know that

∀P ′ ≥ P, ρ(r,G, P,N) = ρ(r,G, P, P ′) ∗ ρ(r,G, P ′, N)

Therefore

∀P ′ ≥ P, ρ(r,G, P, P ′) =
ρ(r,G, P, N)

ρ(r,G, P ′, N)

=
1− 1/rP

1− 1/rN
(
1− 1/rP ′

1− 1/rN
)−1

=
1− 1/rP

1− 1/rP ′
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which is the desired result.

To complete the proof, we show that (4) → (1). By (4), we know

ρ(1, 2, G, r) =
1− 1

r

1− 1
r2

=
r

r + 1

But this is only satisfied for all populations of size 1 if we have

∀v,
δ+(v)

δ−(v
= r

As we saw above, this implies that

∀v, wo(v) = wi(v)

which demonstrates that G must be a circulation and completes the proof.

The isothermal result is just a corollary.

Theorem 2. (Isothermal Theorem.) G is ρ-equivalent to the Moran process ⇔ G is

isothermal, e.g., W is doubly-stochastic.

Superstars are arbitrarily strong amplifiers of natural selection.

We now sketch the derivation of the amplifier theorem for superstars, denoted SK
L,M ,

where K is the amplification factor, L the number of leaves, and M the number of

vertices in the reservoir of each leaf. First we must precisely define these objects.

Definition 3. The Super-star SK
L,M consists of a central vertex vcenter surrounded by

L leaves. Leaf ` contains M reservoir vertices, r`,m and K-2 ordered chain vertices c`,1

through c`,K−2. All directed edges of the form (r`,m, c`,1), (c`,w,c`,w+1), (c`,K+2,vcenter),

and (vcenter, r`,m) exist and no others. In the case K = 2, the edges are of the form

(r`,m, vcenter), and (vcenter, r`,m). Illustrations for K = 2 and K = 3 are given in Fig

3. The weight of an edge (i,j) is given by 1/do(i), where do is the out-degree.
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Now we may move on to the theorem.

Theorem 3. (Super-star Theorem.) As the number and size of the leaves grows

large, the fixation probability of a mutant of fitness r on a super-star of parameter K

converges toward the behavior of a mutant of fitness rK on a circulation:

lim
L,M→∞

ρ(SK
L,M) → 1− 1/rK

1− 1/rKN

Proof. (Sketch) The proof has several steps.

First we observe that for large M, the mutant is overwhelmingly likely to appear

outside the center or the chain vertices.

Now we show that if the density of mutants in an upstream population is d, then

the probability that an individual in a population immediately downstream will be

a mutant at any given time is dr
1+d(r−1)

. In general, if we have η populations, one

upstream of the other, the first of which has mutant probability density d=d(1), we

obtain the following probability density for the νth population

d(ν) =
drν

1 + d(rν − 1)

The result follows inductively from the observation that

d(j + 1) =

drj

1+d(rj−1)
r

1 + drj

1+d(rj−1)
(r − 1)

=
drj+1

1 + d(rj+1 − 1)

For the super-star, this result is precise as we move inward from the leaf vertices along

the chain leading into the central vertex, where derivation of an analogous result is

necessary. Here we require careful bounding of error terms, and allowing L to go off

to the infinite limit. This is in order to ensure that ‘feedback’ is sufficiently attenu-

ated: otherwise, during the time required for information about upstream density to

propagate to the central vertex, the upstream population will have already changed

too significantly. In this latter regime, ‘memory’ effects can give the resident a very
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significant advantage: the initial mutant has died before the central vertex is fully

affected by its presence. For sufficiently many leaves feedback is irrelevant to fixation.

In the relevant regime we establish that the central vertex is a mutant with probability

d(K − 1) =
drK−1

1 + d(rK−1 − 1)

Our result follows by noting that the probability of an increase in the number of

mutant leaf vertices during a given round is very nearly

r

N + P (r − 1)

drK−1

1 + d(rK−1 − 1)
(1− d)

and the probability of a decrease is

1

N + P (r − 1)

1− d

1 + d(rK−1 − 1)
d

Dividing, all the terms cancel but an rK in the numerator. Thus the mutant popula-

tion in the leaves performs a random walk with a forward bias of rK until fixation is

guaranteed or the strain dies out.

In the spirit of this result, we may define an amplification factor for any graph G with

N vertices as the value of K for which ρ(G) = 1−1/rK

1−1/rKN . We have seen above that a

superstar of parameter K has an amplification factor of K as N grows large.

The fixation problem for frequency-dependent evolution on graphs is at

least as hard as NP.

NP-hard problems arise naturally in the study of frequency-dependent selection on

graphs. Let us consider the general case of some finite number of types; a state of

the graph is a partition of its vertices among the types, or a coloring. Given a graph

G and an initial state I, let VULNERABILITY be the decision problem of whether,

given a graph G, an initial state I, a small constant ε, and a desired winning type T,

fewer than w individuals can mutate to T so as to ensure fixation of the graph by
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T with probability at least 1-ε. By reduction from the Boolean Circuit Satisfiability

problem, it can be shown the VULNERABILITY is NP-hard. We omit the details of

the proof here.

Frequency-dependent evolution on graphs leads to a multiplicity of inva-

sion criteria.

The following computation establishes our observations about directed cycles.

Proposition 4. (Fixation on Directed Cycles.) For large N, the directed cycle favors

mutants where b>c (resp. a>d, a>c, b>d) in the positive symmetric (resp. negative

symmetric, positive antisymmetric, negative antisymmetric) orientations.

Proof. (Sketch) For the positive symmetric case, we obtain eq (1) with r = b/c

as a straightforward instance of gambler’s ruin with bias b/c. In the other three

orientations, a bit more work is required to account for the case where the patch

is of size 1 or size of N-1. In the negative symmetric and positive antisymmetric

orientations, the mutant has an aberrant fitness of b for patch sizes of exactly 1 (near

extinction). In both negative orientations, the resident has an aberrant fitness of c

when the mutant patch is of size N-1 (near fixation). Thus we must do some work

to ensure that these aberrations do not ultimately affect which types of mutants are

favored on large cycles.

We must evaluate the following expression to obtain the fixation probability of the

biased random walk:

ρ =
1

1 + ΣN−1
i=1 Πi

j=1
qi

pi

The values of pi and qi represent probabilities of increase and decrease when the

population is of size i. We obtain

ρ−s =
b(d− a)

bd− ab− ad + (d/a)N−2(ad + cd− ac)



9

ρ+a =
b(c− a)

bc− ab− ac + (c/a)N−2(c2)

ρ−a =
b(d− b)

−b2 + (d/b)N−2(bd + cd− bc)

for the negative symmetric, positive antisymmetric, and negative antisymmetric cases.

For large N, these expressions are smaller than the neutral fixation probability 1/N if

d/a (resp. c/a, d/b) is greater than one; if it is less than 1, the fixation probabilities

converge to

ρ−s =
b(a− d)

b(a− d) + ad

ρ+a =
b(a− c)

b(a− c) + ac

ρ−a =
b(b− d)

b2

and the mutant is strongly favored over the neutral case.

Results hold if fertility and mortality are independent Poisson processes.

Finally, we will make some remarks about our assumptions regarding mutation rate

and the meaning of our fitness values.

It is generally the case that suppressing either selection or drift, and in particular

the latter, is time intensive. Good amplifiers get arbitrarily large as ρ → 1 or 0, and

have increasingly significant bottlenecks. Thus, fixation times get extremely long the

more effectively drift is suppressed. However, since we are working in the limit where

mutations are very rare, this timescale can be ignored. The rate of evolution reduces

to the product of population size, mutation rate, and fixation probability.

In our discussions, we have treated fitness as a measure of reproductive fertility. But

a range of frequency-independent interpretations of fitness obtain identical results. If
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instead of choosing an individual to reproduce in each round with probability propor-

tional to fitness, we choose an individual to die with probability inversely proportional

to fitness, and then replace it with a randomly-chosen upstream neighbor, the ρ val-

ues obtained are identical. Put another way, as long as reproduction (leading to

death of a neighbor by overcrowding) and mortality (leading to the reproduction of

a neighbor that fills the void) are independent Poisson processes, our results will hold.




