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Abstract
We show that it is possible to extend hidden Markov models to have
a countably infinite number of hidden states. By using the theory of
Dirichlet processes we can implicitly integrate out the infinitely many
transition parameters, leaving only three hyperparameters which can be
learned from data. These three hyperparameters define a hierarchical
Dirichlet process capable of capturing a rich set of transition dynamics.
The three hyperparameters control the time scale of the dynamics, the
sparsity of the underlying state-transition matrix, and the expected num-
ber of distinct hidden states in a finite sequence. In this framework it
is also natural to allow the alphabet of emitted symbols to be infinite—
consider, for example, symbols being possible words appearing in En-
glish text.

1 Introduction

Hidden Markov models (HMMs) are one of the most popular methods in machine
learning and statistics for modelling sequences such as speech and proteins. An
HMM defines a probability distribution over sequences of observations (symbols)y =
{y1, . . . , yt, . . . , yT } by invoking another sequence of unobserved, orhidden, discrete
state variabless = {s1, . . . , st, . . . , sT }. The basic idea in an HMM is that the se-
quence of hidden states has Markov dynamics—i.e. givenst, sτ is independent ofsρ
for all τ < t < ρ—and that the observationsyt are independent of all other variables
given st. The model is defined in terms of two sets of parameters, the transition matrix
whoseijth element isP (st+1 = j|st = i) and the emission matrix whoseiqth element
is P (yt = q|st = i). The usual procedure for estimating the parameters of an HMM is
the Baum-Welch algorithm, a special case of EM, which estimates expected values of two
matricesn andm corresponding to counts of transitions and emissions respectively, where
the expectation is taken over the posterior probability of hidden state sequences [6].

Both the standard estimation procedure and the model definition for HMMs suffer from
important limitations. First, maximum likelihood estimation procedures do not consider
the complexity of the model, making it hard to avoid over or underfitting. Second, the
model structure has to be specified in advance. Motivated in part by these problems there
have been attempts to approximate a full Bayesian analysis of HMMs which integrates over,
rather than optimises, the parameters. It has been proposed to approximate such Bayesian
integration both using variational methods [3] and by conditioning on a single most likely
hidden state sequence [8].
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In this paper we start from the point of view that the basic modelling assumption of
HMMs—that the data was generated by some discrete state variable which can take on
one of several values—is unreasonable for most real-world problems. Instead we formu-
late the idea of HMMs with a countably infinite number of hidden states. In principle,
such models have infinitely many parameters in the state transition matrix. Obviously it
would not be sensible to optimise these parameters; instead we use the theory of Dirichlet
processes (DPs) [2, 1] toimplicitly integrate them out, leaving just three hyperparameters
defining the prior over transition dynamics.

The idea of using DPs to define mixture models with infinite number of components has
been previously explored in [5] and [7]. This simple form of the DP turns out to be inade-
quate for HMMs.1 Because of this we have extended the notion of a DP to a two-stage hi-
erarchical process which couples transitions between different states. It should be stressed
that Dirichletdistributionshave been used extensively both as priors for mixing propor-
tions and to smooth n-gram models over finite alphabets [4], which differs considerably
from the model presented here. To our knowledge no one has studied inference in discrete
infinite-state HMMs.

We begin with a review of Dirichlet processes in section 2 which we will use as the basis
for the notion of a hierarchical Dirichlet process (HDP) described in section 3. We explore
properties of the HDP prior, showing that it can generate interesting hidden state sequences
and that it can also be used as an emission model for an infinite alphabet of symbols. This
infinite emission model is controlled by two additional hyperparameters. In section 4 we
describe the procedures for inference (Gibbs sampling the hidden states), learning (op-
timising the hyperparameters), and likelihood evaluation (infinite-state particle filtering).
We present experimental results in section 5 and conclude in section 6.

2 Properties of the Dirichlet Process

Let us examine in detail the statistics of hidden state transitions from a particular statest= i
to st+1, with the number of hidden statesfinite and equal tok. The transition probabilities
given in theith row of the transition matrix can be interpreted as mixing proportions for
st+1 that we callπ = {π1, . . . , πk}.
Imagine drawingn samples{c1, . . . , cn} from a discrete indicator variable which can take
on values{1, . . . , k} with proportions given byπ. The joint distribution of these indicators
is multinomial

P (c1, . . . , cn|π) =
k∏
j=1

π
nj
j , with nj =

n∑
n′=1

δ(cn′ , j) (1)

where we have used the Kronecker-delta function (δ(a, b) = 1 iff a= b, and0 otherwise)
to count the number of timesnj thatst+1 = j has been drawn. Let us see what happens to
the distribution of these indicators when we integrate out the mixing proportionsπ under a
conjugate prior. We give the mixing proportions a symmetric Dirichlet prior with positive
concentrationhyperparameterβ

P (π|β) ∼ Dirichlet(β/k, . . . , β/k) =
Γ(β)

Γ(β/k)k

k∏
j=1

π
β/k−1
j , (2)

whereπ is restricted to be on the simplex of mixing proportions that sum to 1. We can
analytically integrate outπ under this prior to yield:

1That is, if we only applied the mechanism described in section 2, then state trajectories under the
prior would never visit the same state twice; since each new state will have no previous transitions
from it, the DP would choose randomly between all infinitely many states, therefore transitioning to
another new state with probability 1.



P (c1, . . . , cn|β) =
∫
dπ P (c1, . . . , cn|π)P (π|β) =

Γ(β)
Γ(n+ β)

k∏
j=1

Γ(nj + β/k)
Γ(β/k)

. (3)

Thus the probability of a particular sequence of indicators is only a function of the counts
{n1, . . . , nk}. The conditional probability of an indicatorcd given the setting of all other
indicators (denotedc−d) is given by

P (cd = j|c−d, β) =
n−d,j + β/k

n− 1 + β
, (4)

wheren−d,j is the counts as in (1) with thedth indicator removed. Note the self-reinforcing
property of (4):cd is more likely to choose an already popular state. A key property of DPs,
which is at the very heart of the model in this paper, is the expression for (4) when we take
the limit as the number of hidden statesk tends to infinity:

P (cd = j|c−d, β) =


n−d,j
n−1+β j ∈ {1, . . . ,K} i.e. represented

β
n−1+β for all unrepresentedj, combined

(5)

whereK is the number of represented states (i.e. for whichn−d,j > 0), which cannot
be infinite sincen is finite. β can be interpreted as the number of pseudo-observations of
π = {1/k, . . . , 1/k}, i.e. thestrengthof belief in the symmetric prior.2 In the infinite limit
β acts as an “innovation” parameter, controlling the tendency for the model to populate a
previously unrepresented state.

3 Hierarchical Dirichlet Process (HDP)

We now consider modelling each row of the transition and emission matrices of an HMM as
a DP. Two key results from the previous section form the basis of the HDP model for infinite
HMMs. The first is that we can integrate out the infinite number of transition parameters,
and represent the process with a finite number of indicator variables. The second is that
under a DP there is a natural tendency to use existing transitions in proportion to their
previous usage, which gives rise totypical trajectories. In sections 3.1 and 3.2 we describe
in detail the HDP model for transitions and emissions for an infinite-state HMM.

3.1 Hidden state transition mechanism

Imagine we have generated a hidden state sequence up to and including timet, building
a table of countsnij for transitions that have occured so far from statei to j, i.e. nij =∑t−1
t′=1 δ(st′ , i)δ(st′+1, j). Given that we are in statest = i, we impose on statest+1 a DP

(5) with parameterβ whose counts are those entries in theith row of n, i.e. we prefer to
reuse transitions we have used before and follow typical trajectories (see Figure 1):

P (st+1 = j|st = i, n, β) =
nij∑K

j′=1 nij′ + β
j ∈ {1, . . . ,K} . (6)

Note that the above probabilities do not sum to 1—under the DP there is a finite probability
β/(
∑
j′ nij′ + β) of not selecting one of these transitions. In this case, the model defaults

to a second different DP (5) onst+1 with parameterγ whose counts are given by a vector
noj . We refer to the default DP and its associated counts as theoracle. Given that we have
defaulted to the oracle DP, the probabilities of transitioning now become

P (st+1 = j|st = i, no, γ) =


noj∑K

j′=1 n
o
j′+γ

j ∈ {1, . . . ,K} i.e. j represented,

γ∑K
j′=1 n

o
j′+γ

j 6∈ {1, . . . ,K} i.e. j is anewstate.
(7)

2Under the infinite model, at any time, there are an infinite number of (indistinguishable) unrep-
resented states available, each of which have infinitesimal mass proportional toβ.
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Figure 1: (left) State transition generative mechanism.(right a-d) Sampled state trajectories
of lengthT = 250 (time along horizontal axis) from the HDP: we give examples of four modes of
behaviour.(a) α= 0.1, β= 1000, γ= 100, explores many states with a sparse transition matrix.(b)
α= 0, β = 0.1, γ = 100, retraces multiple interacting trajectory segments.(c) α= 8, β = 2, γ = 2,
switches between a few different states.(d) α=1, β=1, γ=10000, has strict left-to-right transition
dynamics with long linger time.

Under the oracle, with probability proportional toγ an entirely new state is transitioned
to. This is the only mechanism for visiting new states from the infinitely many available to
us. After each transition we setnij←nij + 1 and, if we transitioned to the statej via the
oracle DP just described then in addition we setnoj←noj + 1. If we transitioned to a new
state then the size ofn andno will increase.

Self-transitions are special because their probability defines a time scale over which the
dynamics of the hidden state evolves. We assign a finite prior massα to self transitions for
each state; this is the third hyperparameter in our model. Therefore, when first visited (via
γ in the HDP), its self-transition count is initialised toα.

The full hidden state transition mechanism is a two-level DP hierarchy shown in decision
tree form in Figure 1. Alongside are shown typical state trajectories under the prior with
different hyperparameters. We can see that, with just three hyperparameters, there are a
wealth of types of possible trajectories. Note thatγ controls the expected number of repre-
sented hidden states, andβ influences the tendency to explore new transitions, correspond-
ing to thesizeanddensityrespectively of the resulting transition count matrix. Finallyα
controls the prior tendency to linger in a state.

The role of the oracle is two-fold. First it serves to couple the transition DPs from different
hidden states. Since a newly visited state has no previous transitions to existing states,
without an oracle (which necessarily has knowledge of all represented states as it created
them) it would transition to itself or yet another new state with probability 1. By consulting
the oracle, new states can have finite probability of transitioning to represented states. The
second role of the oracle is to allow some states to be more influential (more commonly
transitioned to) than others.

3.2 Emission mechanism

The emission processst → yt is identical to the transition processst → st+1 in every
respect except that there is no concept analogous to a self-transition. Therefore we need
only introduce two further hyperparametersβe andγe for the emission HDP. Like for state
transitions we keep a table of countsmiq =

∑t−1
t′=1 δ(st′ , i)δ(yt′ , q) which is the number

of times beforet that statei has emitted symbolq, andmo
q is the number of times symbol
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Figure 2: (left) State emission generative mechanism.(middle) Word occurence for entireAlice
novel: each word is assigned a unique integer identity as it appears. Word identity (vertical) is plotted
against the word position (horizontal) in the text.(right) (Exp 1) Evolution of number of represented
statesK (vertical), plotted against iterations of Gibbs sweeps (horizontal) during learning of the
ascending-descendingsequence which requires exactly 10 states to model the data perfectly. Each
line represents initialising the hidden state to a random sequence containingK= {1, 2, 4, . . . , 128}
distinct represented states. (Hyperparameters are not optimised.)

q has been emitted using the emission oracle.

For some applications the training sequence is not expected to contain all possible obser-
vation symbols. Consider the occurence of words in natural text e.g. as shown in Figure 2
(middle) for theAlice novel. The upper envelope demonstrates that new words continue to
appear in the novel. A property of the DP is that the expected number of distinct symbols
(i.e. words here) increases as the logarithm of the sequence length. The combination of
an HDP for both hidden states and emissions may well be able to capture the somewhat
super-logarithmic word generation found inAlice.

4 Inference, learning and likelihoods

Given a sequence of observations, there are two sets of unknowns in the infinite HMM:
the hidden state sequences={s1, . . . , sT }, and the five hyperparameters{α, β, γ, βe, γe}
defining the transition and emission HDPs. Note that by using HDPs for both states and
observations, we have implicitly integrated out the infinitely many transition and emission
parameters. Making an analogy with non-parametric models such as Gaussian Processes,
we define a learned model as a set of counts{n, no,m,mo} and optimised hyperparameters
{α, β, γ, βe, γe}.
We first describe an approximate Gibbs sampling procedure for inferring the posterior over
the hidden state sequence. We then describe hyperparameter optimisation. Lastly, for cal-
culating the likelihood we introduce an infinite-state particle filter. The following algorithm
summarises the learning procedure:

1. Instantiate a random hidden state sequence {s1, . . . , sT }.
2. For t = 1, . . . , T

- Gibbs sample st given hyperparameter settings, count matrices, and observations.
- Update count matrices to reflect new st; this may change K, the number of repre-

sented hidden states.
3. End t
4. Update hyperparameters {α, β, γ, βe, γe} given hidden state statistics.
5. Goto step 2.

4.1 Gibbs sampling the hidden state sequence

Defineñ andm̃ as the results of removing fromn andm the transition and emission counts
contributed byst. Define similar items̃no andm̃o related to the transition and emission



oracle vectors. An exact Gibbs sweep of the hidden state fromt = 1, . . . , T takesO(T 2)
operations, since under the HDP generative process changingst affects the probability of
all subsequent hidden state transitions and emissions.3 However this computation can be
reasonably approximated inO(T ), by basing the Gibbs update forst only on the state of
its neigbours{st−1, yt, st+1} and the total counts̃n, m̃, ño, m̃o.4

In order to facilitate hyperparameter learning and improve the mixing time of the Gibbs
sampler, we also sample a set of auxiliary indicator variables{ot, ot+1, o

e
t} alongside

st; each of these is a binary variable denoting whether the oracle was used to generate
{st, st+1, yt} respectively.

4.2 Hyperparameter optimisation

We place vague Gamma priors5 on the hyperparameters{α, β, γ, βe, γe}. We derive an
approximate form for the hyperparameter posteriors from (3) by treating each level of the
HDPs separately. The following expressions for the posterior forα, β, andβe are accurate
for largeγ, while the expressions forγ andγe are exact:

P (α, β|s) ∝ G(aα, bα)G(aβ , bβ)
K∏
i=1

βK
(i)−1Γ(α+ β)

Γ(α)
Γ(nii + α)

Γ(
∑
j nij + α+ β)

,

P (βe|s,y) ∝ G(aβe , bβe)
K∏
i=1

βeK
e(i)

Γ(βe)
Γ(
∑
qmiq + βe)

,

P (γ|s) ∝ G(aγ , bγ)
γKΓ(γ)

Γ(T o + γ)
, P (γe|s,y) ∝ G(aγe , bγe)

γK
e

Γ(γe)
Γ(T oe + γe)

whereK(i) is the number of represented states that are transitioned to from statei (includ-
ing itself); similarlyKe(i) is the number of possible emissions from statei. T o andT oe

are the number of times the oracle has been used for the transition and emission processes,
calculated from the indicator variables{ot, oet}. We solve for the maximum a posteriori
(MAP) setting for each hyperparameter; for exampleβeMAP is obtained as the solution to
following equation using gradient following techniques such as Newton-Raphson:∑K

i=1

[
Ke(i)/βeMAP + ψ(βeMAP)− ψ(

∑
qmiq + βeMAP)

]
− bβe + (aβe − 1)/βeMAP = 0 .

4.3 Infinite-state particle filter

The likelihood for a particular observable sequence of symbols involves intractable sums
over the possible hidden state trajectories. Integrating out the parameters in any HMM
induces long range dependencies between states. In particular, in the DP, making the tran-
sition i→ j makes that transition more likely later on in the sequence, so we cannot use
standard tricks like dynamic programming. Furthermore, the number of distinct states can
grow with the sequence length as new states are generated. If the chain starts withK dis-
tinct states, at timet there could beK + t possible distinct states making the total number
of trajectories over the entire length of the sequence(K + T )!/K!.

3Although the hidden states in an HMM satisfy the Markov condition, integrating out the param-
eters induces these long-range dependencies.

4This approximation can be motivated in the following way. Consider sampling parametersθ
from the posterior distributionP (θ|y, s) of parameter matrices, which will depend on the count
matrices. By the Markov property, for agivenθ, the probability ofst only depends onst−1, yt and
st+1, and can therefore be computed without considering its effect on future states.

5 ν ∼ G(a, b) = ba/Γ(a) · νa−1e−bν , with a andb the shape and inverse-scale parameters.



We propose estimating the likelihood of a test sequence given a learned model using particle
filtering. The idea is to start with some number of particlesR distributed on the represented
hidden states according to the final state marginal from the training sequence (some of theR
may fall onto new states).6 Starting from the set of particles{s1

t , . . . , s
R
t }, the tables from

the training sequences{n, no,m,mo}, andt = 1 the recursive procedure is as specified
below, whereP (st|y1, . . . , yt−1) ≈ 1

R

∑
r δ(st, s

r
t ) :

1. Compute lrt = P (yt|st = srt ) for each particle r.
2. Calculate lt = (1/R)

∑
r l
r
t ≈ P (yt|y1, . . . , yt−1).

3. Resample R particles srt ∼ (1/
∑
r′ l

r′
t )
∑
r′ l

r′
t δ(st, s

r′
t ).

4. Update transition and emission tables nr, mr for each particle.
5. For each r sample forward dynamics: srt+1 ∼ P (st+1|st = srt , n

r,mr); this may
cause particles to land on novel states. Update nr and mr.

6. If t < T , Goto 1 with t = t+ 1.

The log likelihood of the test sequence is computed as
∑
t log lt. Since it is a discrete

state space, with much of the probability mass concentrated on the represented states, it is
feasible to useO(K) particles.

5 Synthetic experiments

Exp 1: Discovering the number of hidden states We applied the infinite HMM infer-
ence algorithm to theascending-descendingobservation sequence consisting of 30 con-
catenated copies ofABCDEFEDCB. The most parsimonious HMM which models this
data perfectly has exactly 10 hidden states. The infinite HMM was initialised with a ran-
dom hidden state sequence, containingK distinct represented states. In Figure 2 (right) we
show how the number of represented states evolves with successive Gibbs sweeps, starting
from a variety of initialK. In all casesK converges to 10, while occasionally exploring 9
and 11.

Exp 2: Expansive A sequence of lengthT =800 was generated from a 4-state 8-symbol
HMM with the transition and emission probabilities as shown in Figure 3 (top left).

Exp 3: Compressive A sequence of lengthT =800 was generated from a 4-state 3-symbol
HMM with the transition and emission probabilities as shown in Figure 3 (bottom left).

In both Exp 2 and Exp 3 the infinite HMM was initialised with a hidden state sequence
with K=20 distinct states. Figure 3 shows that, over successive Gibbs sweeps and hyper-
parameter learning, the count matrices for the infinite HMM converge to resemble the true
probability matrices as shown on the far left.

6 Discussion

We have shown how a two-level Hierarchical Dirichlet Process can be used to define a non-
parametric Bayesian HMM. The HDP implicity integrates out the transition and emission
parameters of the HMM. An advantage of this is that it is no longer necessary to constrain
the HMM to have finitely many states and observation symbols. The prior over hidden state
transitions defined by the HDP is capable of producing a wealth of interesting trajectories
by varying the three hyperparameters that control it.

We have presented the necessary tools for using the infinite HMM, namely a linear-time
approximate Gibbs sampler for inference, equations for hyperparameter learning, and a
particle filter for likelihood evaluation.

6Different particle initialisations apply if we do not assume that the test sequence immediately
follows the training sequence.



True transition and
emission probability

matrices used for Exp 2

n(1) m(1) n(80) m(80) n(115) m(115) n(150)m(150)

True transition and
emission probability

matrices used for Exp 3

n(1) m(1) n(100) m(100) n(165) m(165) n(230)m(230)

Figure 3: The far left pair of Hinton diagrams represent the true transition and emission prob-
abilities used to generate the data for each experiment 2 and 3 (up to a permutation of the hidden
states; lighter boxes correspond to higher values).(top row) Exp 2: Expansive HMM. Count matrix
pairs{n,m} are displayed after{1, 80, 115, 150} sweeps of Gibbs sampling.(bottom row) Exp 3:
Compressive HMM. Similar to top row displaying count matrices after{1, 100, 165, 230} sweeps of
Gibbs sampling. In both rows the display after a single Gibbs sweep has been reduced in size for
clarity.

On synthetic data we have shown that the infinite HMM discovers both the appropriate
number of states required to model the data and the structure of the emission and transition
matrices. It is important to emphasise that although the count matrices found by the infinite
HMM resemble point estimates of HMM parameters (e.g. Figure 3), they are better thought
of as the sufficient statistics for the HDP posteriordistributionover parameters.

We believe that for many problems the infinite HMM’s flexibile nature and its ability to
automatically determine the required number of hidden states make it superior to the con-
ventional treatment of HMMs with its associated difficult model selection problem. While
the results in this paper are promising, they are limited to synthetic data; in future we hope
to explore the potential of this model on real-world problems.
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