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Information Geometry on Hierarchy of Probability
Distributions

Shun-ichi Amarj Fellow, IEEE

Abstract—An exponential family or mixture family of proba-  grees or amounts of interactions into pairwise, triplewise, and

bility distributions has a natural hierarchical structure. This paper higher order interactions. To this end, we study a fanBly
gives an “orthogonal” decomposition of such a system based on ;.

; . : > ”» k=1,2, ..., n) of joint probability distributions of. vari-
information geometry. A typical example is the decomposition of . - . . .
stochastic dependency among a number of random variables. In ables which have at moktway interactions but no higher inter-

general, they have a complex structure of dependencies. Pairwise@ctions. Two dual types of projections, namely, ¢qgrojection
dependency is easily represented by correlation, but it is more dif- andm-projection, to such subspaces play a fundamental role.
ficult to measure effects of pure triplewise or higher order interac-  The present paper studies such a hierarchical structure and the
tions (dependencies) among these variables. Stochastic dependencyg ated invariant “quasi-orthogonal” quantitative decomposition
is decomposed quantitatively into an “orthogonal” sum of pair- N . )
wise, triplewise, and further higher order dependencies. This gives by usmg information geometry [,3]’ [8]'_[12]’ [14], [28]’ [30]. In
anew invariant decomposition of joint entropy. This problemis im-  formation geometry studies the intrinsic geometrical structure to
portant for extracting intrinsic interactions in firing patterns ofan ~ be introduced in the manifold of a family of probability distri-
ensemble of neurons and for estimating its functional connections. putions. Its Riemannian structure was introduced by Rao [37].
The orthogonal decomposition is given in a wide class of hierar- ~qis 4, [21], [22], [23] studied the geometry Bilivergence in
chical structures including both exponential and mixture families. detail and applied it to information theory. It was Chentsov [19]
As an example, we decompose the dependency in a higher order . 7 X .
Markov chain into a sum of those in various lower order Markoy ~ Who developed Rao’s idea further and introduced new invariant
chains. affine connections in the manifolds of probability distributions.
Index Terms—becomposition of entropy,e- and mz-projections, Nagaol_«_’:l and Amari [31] de\_/elo_ped a theorY of du‘:’_‘l structures
extended Pythagoras theorem, higher order interactions, higher and unified all of these theories in the dual differential-geomet-
order Markov chain, information geometry, Kullback divergence. rical framework (see also [3], [14], [31]). Information geometry
has been used so far not only for mathematical foundations of
statistical inferences ([3], [12], [28] and many others) but also
applied to information theory [5], [11], [25], [18], neural net-
E study structures of hierarchical systems of probabilityorks [6], [7], [9], [13], systems theory [4], [32], mathemat-
distributions by information geometry. Examples ofcal programming [33], statistical physics [10], [16], [38], and
such systems are exponential families, mixture families, highsthers. Mathematical foundations of information geometry in
order Markov chains, autoregressive (AR) and moving averag function space were given by Pistone and his coworkers [35],
(MA) models, and others. Given a probability distribution, wg36] and are now developing further.
decompose it into hierarchical components. Different from the The present paper shows how information geometry gives
Euclidean space, no orthogonal decomposition into componeats answer to the problem of invariant decomposition for hi-
exists. However, when a system of probability distributionsrarchical systems of probability distributions. This leads to a
forms a dually flat Riemannian manifold, we can decomposew invariant decomposition of entropy and information. It can
the effects in various hierarchies in a quasi-orthogonal mannige applied to the analysis of synchronous firing patterns of
A typical example we study is interactions among a numbgaeurons by decomposing their effects into hierarchies [34], [1].
of random variables(,, ..., X,. Interactions among them in- Such a hierarchical structure also exists in the family of higher
clude not only pairwise correlations, but also triplewise anstrder Markov chains and also graphical conditional indepen-
higher interactions, forming a hierarchical structure. This cagence models [29].
has been studied extensively by the log-linear model [2] which The present paper is organized as follows. After the Introduc-
gives a hierarchical structure, but the log-linear model itself dogisn, Section Il is devoted to simple introductory explanations of
not give an orthogonal decomposition of interactions. Givenformation geometry. We then study taelat andm-flat hi-
a joint distribution ofn random variables, it is important toerarchical structures, and give the quantitative “orthogonal de-
search for an invariant “orthogonal” decomposition of their d&eomposition” of higher order effects in these structures. We then
show a simple example consisting of three binary variables and
Manuscript received November 15, 1999; revised December 28, 2000. study how a joint distribution is quantitatively decomposed into
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touch upon the cases of multivalued random variables and c@&- Dually Flat Manifolds
tinuous variables. We finally explain the hierarchical structures o anifold S is said to bec-flat (exponential-flat), when

of higher order Markov chains. there exists a coordinate system (parameterizafianich that,

forall 4, j, k
II. PRELIMINARIES FROM INFORMATION GEOMETRY 9

15} 15]
A. Manifold, Curve, and Orthogonality E 96:00; log p(a, 0)% log p(z, 8)| =0 (8)

_Let us consider a parameterized family of probability diSgentically. Suctd is callede-affine coordinates. When a curve
tributions 8 = {p(x, &)}, wherez is a random variable and 6(t) is given by a linear functiod(t) = ta + b in the -co-

§= (&, ..., &) is areal vector parameter to specify a distrig ginates, whera and b are constant vectors, it is called an
bution. The familyS is regarded as an-dimensional manifold ,_yendesic. Any coordinate curée itself is anc-geodesic. (It
having as a coordinate system. When the Fisher informatiQqysssible to define as-geodesic in any manifold, but it is no
matrix G = (gi;) more linear and we need the concept of the affine connection.)
A typical example of are-flat manifold is the well-known
exponential family written as
a&; aE;

p(@, 8) = exp {3 biki(x) — (6)} ©)
whereE denotes expectation with respeciie:, &), is nonde- . . . o
generates is a Riemannian manifold, arﬁ(ﬁ) p|ays the role Wherek‘i(.’L’) are given functions an{d is the nOFmaIlZlng factor.

o) = B [ 21082, §) Ologp(z, §)

1)

of a Riemannian metric tensor. Thee-affine coordinates are the canonical parameess(6; ),
The squared distanegs? between two nearby distributions@nd (8) holds because
p(x, §) andp(z, &, +d€) is given by the quadratic form @& 92 92

a6,08, °87 = ~ag,90, V0 (10)

ds® = i (€) det dev 2
° Zgj(g) e @ does not depend anand E[55- logp] = 0.
Dually to the above, a manifold is said to beflat (mixture-

It is known that this is twice the Kullback-Leibler divergence ) s
flat), when there exists a coordinate systgsuch that

2 _ ) 1 92 9
ds* = 2K Llp(z, §) : plz, €+ dE)] O B g P g, oeptz ) =0 ()
b (3 N J
where : : . i . .
identically. Heren is calledm-affine coordinates. A curve is
p(x) called anm-geodesic when itis represented by a linear function
KlLp : ql = /p(x) log ) dz. (4) 7(t) = at+bin them-affine coordinates. Any coordinate curve

7; of 5 is anm-geodesic.
Let us consider a cung= £(¢) parameterized byin S, that A typical example of am-flat manifold is the mixture family
is, a one-parameter family of distributiop&r, £(t)) in S. Itis
convenient to represent the tangent veé(oy = (d/dt)&(t) of p(z, ) = Zm%‘ (z) + (1 _ Z”Z) o) (12)

the curve at by the random variable called the score . e
y whereg; (x) are given probability distributions arid< 7; < 1,

E 7 < 1.
d log p(z, &(t)) (5) The following theorem is known in information geometry.

&t) = pr

Theorem 1: A manifold S is e-flat when and only when it is
which shows how the log probability changestaisicreases. ;,,-flat andvice versa

Given two curvest; (¢) and&,(¢) intersecting at, the inner . . o )
product of the two tangent vectors is given by This shows that an exponential family is automaticathflat

although it is not necessarily a mixture family. A mixture family
) ) d d is e-flat, although it is not in general an exponential family. The
<§1(t), §Q(t)> =E |— logp(z, £ (1) logp(z, §(1)) m-affine coordinatesrf-coordinates) of an exponential family
dt dt are given by

d d
=> g (&) 7 €2i(t) 7 (1) (6) n = Elki(z)] =

a
57 (0) (13)

The two curves intersect §t(t) = £,(¢) orthogonally when  \yhich is known as the expectation parameters. The coordinate
transformation betweethandn is given by the Legendre trans-

<€1(t) £2(t)> -0 @) formation, and the inverse transformation is
that is, when the two scores are noncorrelated. T o
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wherey(n) is the negative entropy

¢(n) = Ellogp(z, n)] (15)

and .
m-—geodesic

P(@) +¢m) +6-n=0 (16)

holds with@-n = > &;7;. This was first remarked by Barndorff-
Nielsen [15] in the case of exponential families.

Given a distribution in a flat manifoldy(z, #) in the coor-
dinatesf andp(x, i) in the coordinateg have different func- q
tion forms, so that they should be denoted differently such as
ps(x, 8) andp,(x, ), respectively. However, we abuse nota- '
tion such that the parametor 5 decides the function form of F9- 1. Generalized Pythagoras theorem.

p(z, 8) or p(x, n) automatically. ) o ) )

Dually to the above, a mixture family isflat, although itis 1€ divergence satisfid3[p : p’| > 0 with equality when, and

not an exponential family in general. Theaffine coordinateg  ONly when,p = p’. In the cases of an exponential family and a

e—geodesic

are derived from mixture family, this is equal to the Kullback—Leibler divergence
0)
dp(n Dlp:pl=E [1 g } 23
0= 280 [ (a0 - ol logpte, me. 1) pirl=te s g) )

whereEj is the expectation with respect ¢z, 8).
For a dually flat manifoldS, the following Pythagoras the-
orem plays a key role (Fig. 1).

The #-function of (16) in a mixture family is

¥(8) = _/qo(x)p(x’ n(8)) dz. (18) Theorem 3:Let p, q, » be three distributions ir. When

the m-geodesic connecting and ¢ is orthogonal at; to the
WhenS is a dually flat manifold, the-affine coordinate¥  .-geodesic connectingandr

andm-affine coordinates), connected by the Legendre trans-
formations (13) and (14), satisfy the following dual relation. Dlp : g+ Dlg : r]=Dlp : 7] (24)

Theorem 2:The tangent vectors (represented by randoffhe same theorem can be reformulated in a dual way.

variables) of the coordinate curv .
) 8s Theorem 4:For p, q, r € 8, when thee-geodesic con-

3 nectingp andq is orthogonal at to them-geodesic connecting
e = 50 log p(x, ) (29) q andr
and the tangent vectors of the coordinate curyes Dlp : q]+Dlq : 7] =Dlp : 1] (25)
9 with
€j = o— logp(x, ) (20) -
Ton Dlp : q)=Dlg : p|. (26)

are orthonormal at all the points
[ll. FLAT HIERARCHICAL STRUCTURES

<6f,, e’;> =F % log p(x, 0)% logp(x, n) We have summ_a_rize(_JI the g_eometrical features of dually flat
g 7 families of probability distributions. We extend them to the ge-
= bij (21) ometry of flat hierarchical structures.
whereé;; is the Kronecker delta. A. E-Flat Structures

LetT C S be a submanifold of a dually flat manifol8l It is
called ane-flat submanifold, whe" is written as a linear sub-
Letp = p(z, ) andp’ = p(x, 8") be two distributions in space in the-affine coordinate® of S. It is called anm-flat
a dually flat manifoldS, and letp and#’ be the corresponding submanifold, when it is linear in the-affine coordinates of
m-affine coordinates. They have two convex potential functiorgs An e-flat submanifoldT is by itself ane-flat manifold, and
1(6) and ¢(n). In the case of exponential familieg, is the hence is amn-flat manifold because of Theorem 1. However, it
cumulant generating function agdis the negative entropy. For is not usually ann-flat submanifold ofS, because itis not linear
a mixture family,¢ is also the negative entropy. By using thén 5. (Mathematically speaking, anflat submanifold has van-
two functions, we can define a divergence frpro p’ by ishing embedding curvature in the sense ofdfadfine connec-
tion, but itsm-embedding curvature is nonvanishing, although
Dlp : ] =v0)+¢n')—6-7. (22) bothe- andm-Riemann—Christoffel curvatures vanish.) Dually,

C. Divergence and Generalized Pythagoras Theorem
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anm-flat submanifold is are-flat manifold but is not are-flat
submanifold.
Let us consider a nested serieszeffat submanifolds

E, CcCE,Cc---CE, (27)

where everyE;, is an e-flat submanifold ofE; ;. EachE}
is automatically dually flat, but is not am-flat submanifold.
We call such a nested series @fflat hierarchical structure or,
shortly, thee-structure. A typical example of thestructure is
the following exponential-type distributions:

} (28)

> 85 95(x) —9(6)

=1

p(z, 8) = exp {

wheref = (64, ...
6, 85 being thepth subvector, ang,(x) is a random vector
variable corresponding to it.

The expectation parameter of (28) is partitioned corre-
spondingly as

g=1,... (29)

N = Eglgs(w)], ;7

where Ey is expectation with respect ta(x, 8). Thus,n =
(n1, ---, my,)- Here,n,(0) is a function of the entird, and not
of 8 only.

B. Orthogonal Foliations

Let us consider a new coordinate system called /et
mixed ones

70n)~

It consists of a pair of complementary partsicdindéd, namely,

§o= (M3 0p) = (M, -5 M O, - (30)

M- :('}717 N2y -0y ﬁk) (31)
ok+ = (0k+17 0k+27 (AAS] on) . (32)

It is defined for anyk.
We define a subsdf;,(ci.+ ) for ex+ = (exy1, --., €,) Of §

consisting of all the distributions having the saéhe coordi-
nates, specified b§,+ = ¢;+, but the othe# coordinates are
free. This is written as

Ej (e+) = {p(@, 0) | 1+ = cr+} . (33)
They give a foliation of the entire manifold
St

The hierarchicale-structure is introduced ir§ by putting
Ci+ = 0

E. (0)Cc Ex(0)C---C E,(0)=8. (35)
Dually to the above, let
M, (dy-) = {p(z, 0) | M- = ds-} (36)

be the subset it in which then,_-part of the distributions
have a common fixed valug,— . This is anm-flat submanifold.
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m-—geodesic

e

Fig. 2. Information projectionifz-projection).

, 8,,) is a partition of the entire parameterThey definen-flat foliations. Because of (21), the two foliations

are orthogonal in the sense that submanifdifls and E;. are
complementary and orthogonal at any point.

C. Projections and Pythagoras Theorem

Given a distributiorp(z, ) with partition8 = (64, ..., 8,,),
it belongs taE;, = E;(0) whenf,+ = (0411, ..., 8,)=0.In
generalg;, is considered to represent the effect emerging from
E,. but not fromE;,_;. We call it the %th effect” of p(z, 6).
In later examples, it represents thth-order effect of mutual
interactions of random variables. The submanitBldincludes
only the probability distributions that do not have effects higher
thank. Consider the problem of evaluating the effects higher
thank. To this end, we define the information projectiorpab

p™ () = argmin D[p(z) : q(x)]. (37)

qeE,

This p*) is the point inE}, that is closest tg in the sense of
divergence.

Theorem 5:Let ¢* be the point in Ey such that the
m-geodesic connectingandg* is orthogonal taFy.. Then,g*
is unique ang® is given byg*.
Proof: For any pointy € E;, the e-geodesic connecting
g and ¢* is included inE;, and hence is orthogonal to the
m-geodesic connectingandqg® (Fig. 2). Hence, the Pythagoras
theorem

Dlp : ql=Dlp : ¢']+ D[q" : q] (38)
holds. This proveg®) = ¢* andg* is unique. O
We callp®*) them-projection ofp to Ej,, and write
k
P =T]r (39)
Let pg € Eq be a fixed distribution. We then have
Dlp : pol=D [p : p““)} +D [p““‘) : po} . (40

Hence,D[p : p™®] is regarded as the amount representing ef-
fects ofp higher thark, whereasD[p®*) : po] is that not higher
thank.
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The coordinates gf*) are not simply Theorem 7: The projectionp™®) of p to E;, is the maximizer
of entropy among € M, having the sam&-marginals ap
61, ..., 600, 0,....0)

) = arg max Hlq]. 48
since the manifold is not Euclidean but is Riemannian. In order p rfgﬁkx la] (48)
to obtainp®), the k-cut mixed coordinateg, are convenient.
Theorem 6: Let the e- andm-coordinates ofp be 8 and. This relation is useful for calculating™.

Let thee- andm-coordinates of the projectign®) = []* p be
0*) andy®), respectively. Then, the-cut mixed coordinates E- Orthogonal Decomposition
of p® is The next problem is to single out the amount of ktie-order
effects inp(, @), by separating it from the others. This is not
&=, ... m30,...,0) (41) given by#é;.. The amount of the effect of ordéris given by the

. ! . divergence
that |s,17§f,) = - andofff =0. d

Proof: The pointgiven by (41) is included i, (0). Since Dy = D [p® . k=1 49
them-coordinates of andp™® differ only inn, ,,, ...n,,, the kT [p P } (49)
m-geodesic connecting(x, 7) and p®(z, n*)) is included

which is certified by the following orthogonal decomposition.
in My (n,—). Since M}, is orthogonal taEy, this p(*) is the y 9 9 P

m-projection ofp to Ey,. O Theorem 8:
In order to obtain the ful- or g-coordinates op*), 8 = _ - ®) . (h—1)
6", 0) andn® = (n,_, "), we need to solve the set of Dlp : pol =3 D [p P } ’ (50)
equations b=t
& 7] k Theorem 8 shows that theth-order effects are “orthogo-
6 = (m, ) (42) - i
K om,- ko Tt nally” decomposed in (50). The theorem might be thought as

9 a trivial result from the Pythagoras theorem. This is so w8ien
0= o (M-, 'r;gl)) (43) is a Euclidean space. However, this is not trivial in the case of a

M+ dually flat manifold. To show this, let us consider the “theorem
7] (*) of three squares” in a Euclidean space: ket r, s be four
- 00,,- v {0 0) (44) corners in a rectangular parallelpiped. Then
) _ 0 (k) 75)2 = (79)? + ()% + (75)2. 51
=gV (ok,, 0) . (45) (75)? = (p0)* + (7)* + (75) (51)

(k) (k) In a dually flat manifold, the Pythagoras theorem holds when
Note thatm, = = m,-, 8, # ;. Henceg,— changes by qne edge is am-geodesic and the other is emeodesic. Hence,

the m-projection. This implies thatfs, ..., 8,) does not give (51) cannot trivially be extended to this case, becg@smmnnot
any orthogonal decomposition of the effects of various ordegs, ane-geodesic and am-geodesic at the same time.

and that,, does not give the pure ordéreffect except forthe  1hea theorem is proved by the properties of the orthogonal
case 0ff+ = 0. foliation. We show the simplest case. Let us consider

D. Maximal Principle {poy=EyCE,CE,CE;=8

The projectionp®) is closely related with the maximal ) ) o _ _
entropy principle [27]. The projection®) belongs toMy(p) and Ie_tp< ) andp(® be them-projections ofp. We write their
which consists of all the probability distributions having th&€oordinates as
same k-marginal distributions ag, that is, the samey, - a _
coordinates. For any € M;, p® is its projection toE;,. p: 6 =(61, 63, 65), = (11, 72, M) (52)
Hence, because of the Pythagoras theorem P60 = (51’ b, 0) ’

Dlq : po] =D [q : p““)} +D [p““) : po} (46)

n= ("71’ 72, ﬁ?)) (53)

p(l); 0 = (51, Oa 0) ’ n= ('rha ﬁ?a 53) N (54)
the minimizer ofD[q : po] for ¢ € M, is p®).

We have Then, we see that the:-projection ofp® to E; is p), al-
though them-geodesic connecting’® andp(®) is not usually
Dlg : pol = > q(x)logg(x) — Y _ q(x)logpo(x) included inE,. This proves
= —HJ[q] — const (47)

Dlp : po] = D[p : p(”} +D[p(2) : p(l)} +D[p(l) : p(o)]
becausé ¢(z) log po(2) depends only on the marginal distri- (55)
butions ofg and is constant for al} € M;,. Hence, we have the

geometric form of the maximum principle [27]. The general case is similar.
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F. M-Flat Structure

Dually to the e-structure, we can study the-hierarchical
structure

MocM cM,Cc---CcM,=8 (56)

where M ;._, is anm-flat submanifold ofM;. A typical ex-
ample is the mixture family

s={p@. m | p(z.n)

=> m{ai(=) )}+( Zm) qO(a?)} (57)

where

The e-projection ofp € S to M, is defined by
™ (2) = argmin D[p, ¢] = argmin D[q : p|. (59)

qEM,, qEM,,
We can also show the orthogonal decomposition theorem

n

Dip : pol Z [(’“):

)] (60)

wherep™ = p andp(®
The quantity

= Po = qo-

— ﬁ[]—g(k‘) :]—,(k‘—l)]

is regarded as theth-order effect ofp in the mixture family or
in a more generah-structure. A hierarchical MA model in time
series analysis is another example ofthestructure [4], where

the minimal principle holds instead of the maximal principle [4]t"v

IV. SIMPLE EXAMPLE: TRIPLEWISE INTERACTIONS

The general results are explained by a simple example

of the set of joint probability distributions§'s {p(z)},
x = (21, z2, x3), of binary random variable¥,, X, andXs,
wherez; = 0 or 1. We can expantbg p(z)

Z 0;x; + Z 00,55 + 0123120203 — 90 (61)

obtaining the log-linear model [2]. This shows th84 is an
exponential family. The canonical eraffine coordinates are

log p(x

0 = (61, 02, 03; 612, O23, b31; 0123) which are partitioned as
0 =6y, 0>, 65) (62)
0, =(64, 6o, 63), 0> = (612, Oo3, 631) (63)
03 = (0123). (64)

This defines a hierarchicatstructure inSs, where#; repre-
sents pairwise interactions amg represents the triple inter-

action, although they are not orthogonal. The correspondin

m-affine coordinates are partitioned as

n= (1, M M3) (65)

wheren; = (71, 172, 13) Ny = (N12, M23, M13), andnz = (1123),
with

1 = E[x;] = Prob {z; = 1} (66)
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ij IE[{L’Z.’L’J] = Prob {-Tz =x; = 1} (67)

123 IE[$1$2$3] = Prob {371 = X2 = T3 = 1}. (68)
We have a hierarchicalstructure

EoCcE,CcE,CE;=5; (69)

whereE, is a singletorpg () = 1/8 with 8 = 0, E, is defined
by 8,- = (62, 83) = 0, E; is defined by#,+ = 8; = 0. On

the other handy,—- = n;, = (11, 72, 73) gives the marginal
distributions ofX;, X, andX3, andn,_ = (1, 1,) gives the
all the pairwise marginal distributions.

Consider the two mixed cut coordinatés: = (n,—; 0.+)
andé, = (n,—; 0,+). Sinced,+ are orthogonal to the co-
ordinates that specify the marginal distributiops-, 8,+ =
(82, 83) represents the effect of mutual interactions\af, Xo,
and.X3, independently of their marginals. Similar®; defined
by 8,25 = 0 is composed of all the distributions which have no
intrinsic triplewise interactions but pairwise correlations. The
two distributions given by, = (n,—, 3) and§, = (n,-, 6;)
have the same pairwise marginal distributions but differ only
in the pure triplewise interactions. Sinée:s is orthogonal to
.- = (1., 71), it represents purely triplewise interactions, as
is well known in the log-linear model [2], [18].

The partitioned coordinatés= (8., 8-, 85) are not orthog-
onal, so that we cannot say tlatsummarizes all the pure pair-
wise correlations, except for the special casé0& 0. Given
p(z, 8), we need to separate pairwise correlations and triplewise
interactions invariantly and obtain the “orthogonal” quantitative
decomposition of these effects.

We projectp to E; and E,, giving ‘" and p(?, respec-
ively. ThenpV is the independent distribution having the same
marginals ap, andp(® is the distribution having the same pair-
wise marginals ag but no triplewise interaction. By putting

Dy =D p: p?)] (70)
Dy =D [p® : pV] (71)
Do =D [pY : po] (72)
we have the decomposition
Dlp : po]l = D2 4 D1 + D. (73)

Here, D, represents the amount of purely triplewise interaction,
D; the amount of purely pairwise interaction, abglthe degree
of deviations of the marginals gffrom the uniform distribution
po- We have thus the “orthogonal” quantitative decomposition
of interactions.

It is interesting to show a new type of decomposition of en-
tropy or information from this result. We have

g
ol = p(x)
= _H(X17 X27 X3) +3 (74)
3
D pY : po] == Y H(X:)+3 (75)
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where H(X,, X», X3) and H(X;) are the total and marginal The manifoldS,, is an exponential family and is also a mix-
entropies ofX = (X;, X5, X3). Hence, ture family at the same time. Let us expdnog p(z) to obtain
the log-linear model [2], [17]

H[X, Xy, X3 Z Z
3 logp(x) = O;x; + ;i3
= ZH(XZ) -D [p : p(Q)} -D [p@) : p(l)} . (76) i<y
=t + Z Oijptixyxy -+ 01 qxy - mny —%  (85)
One can define mutual information amofg, X», and X3 by i<y <k
T, Ta, T where indexes of; ;x, etc., satisfyi < j < k, etc. Then
I[X1, Xo, X5] = z:p(g,;l7 T2, T3) 1Ogu ik fy <j
p(z1)p(z2)p(es) 0=(6;06;,...,00.) (86)
=Y H(X;) - H[X1, X2, X3]. (77)  has2"—1 components. They define taeflat coordinate system
Then, (73) gives a new invariant positive decomposition (S’If S o . )
1[X1, Xa, Xs] In order to simplify index notation, we introduce the fol-

lowing two hyper-index notations. Indexds .J, K, etc., run
I[X,, Xy, X3] =D |:p : p(2):| +D |:p(2) : p(l):| . (78) overn-tuples of binary numbers

In information theory, the mutual information among three vari- I'=(iy, iz, ... in), Gy, 8 =0,1  (87)
ables is sometimes defined by except for(0, ..., 0). Hence, the cardinalityZ| of the index

L(X1 : Xz : Xa) =I(X) : Xo)—I(X1 : X5 | Xs). (79) S€t is2" — 1. IndexesA, B, C, etc., run over the set consisting
of a single index:, a pair of indexegi, j) wherei < j, a

Unfortunately, this quantity is not necessarily nonnegative ([2@tiple of indexes(s, j, k) wherei < j < k, ..., andn-tuple
see also [24]). Hence, our decomposition is new and is cofl; 2, ..., »), that is, A stands for any element in the set
pletely different from the conventional one [20] {i, ij, dijk, ..., 1---n}.

In terms of these indexes, the two coordinate systems given
by (83) and (86) are written as

. . . . p=(p1) (88)
It is easy to obtaip(! from givenp. The coordinates gf®
are obtained by solving (42)—(45). In the present case, the mixed 0=(6,) (89)
cutofp® is€, = (11,, ny; 0). Hence, they-coordinates op()
are(ny, ., , T123), Where the marginalg ands;; are the same
asp andg; 5 is determined such thét .3 becomes). Since we

I(Xl, XQ, Xg) = I(Xl : XQ) +I(X2 : Xg)
+I(X1 . Xg) —I(X1 . XQ . Xg) (80)

respectively. We now study the coordinate transformations
among them.

Letus conside2™—1 functions ofe = (x4, ..., x,) defined
have by
f105 = log P111P1ooPoroPoor (81) 1, —
P110P101Po11Pooo §1(x) = { (90)
. . . 0, otherwise.
by putting#;23 = 0, the7, 5 of p'? is given by solving (82) o . .
shown at the bottom of the page. Here,z = I implies that, for/ = (i, ..., i), 21 =
i1, ..., Tn = i,. Eaché;(z) is a polynomial of degree,
V. HIGHER ORDER INTERACTIONS OFRANDOM VARIABLES ~ Written as
A. Coordinate Systems 6, Sp(z) = x'r .. gln (91)
. Let Xy, s X, ben binary variables and let = p(z) be where we put
its probability,z = (z1, ..., z,), z; = 0, 1. We assume that .
p(z) > 0 for all z. The set of all such probability distributions o= z, i=1 (92)
isa(2" — 1)-dimensional manifold,,, where2™ probabilities I i=0.
Diy-i, = Prob{X1 =1, ..., Xp = in}, i, =0,1 The polynomials can be expanded as
(83) _ I I I
constitute a coordinate system in which one of them is detef (%) = Zbi “Z bijrizte '+Z bl 2 (93)
mined from or, shortly, as
> piei, =1 (84) §(x) =Y BiX, (94)
By ey by A

— (m2 = M1o3)(ma — N123) (23 = M1az)(L — M — M2 — 73 + M2 + 723 + M3 — N123) 82
Moz = — — — . (82)
(m — M2 — M3 + T123) (M2 — 23 — M2 + T123) (N3 — 113 — 723 + T103)
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where we set
Xa =24 2 (95)

whenAisiy - - -i;. The matrixB = (B)isa(2"—1)x(2"—1)
nonsingular matrix. We have

Xa=Y (B_l); 51(z)
I

where(B™'), are the elements of the inverse Bf It is not
difficult to write down these elements explicitly.
The probability distributions of,, is rewritten as

p@ ) =Y pror@) + (1= 3 pr) 6o(a)

whereo(2) = 1 whenz = (0, ...

(96)

(97)

rewritten as
p(@, 0) = exp {3 04X —5(0)}.

This shows thaf,, is an exponential family.

(98)

, 0) and 0 otherwise.
This shows thaf,, is a mixture family. The expansion (85) is
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which proves (103). We have

I
na = E[Xa] = 213 (B7) Els:@]  (100)
|
B. E-Hierarchical Structure of5,,
Let us naturally decompose tlecoordinates into
0=(6.,05...,6,) (110)

wheref;, summarize® 4 with |A| = k, that is, those consisting
of k indexesi; - - -i;. Henced,, has, C;, components. LeE;,
be the subspace defined By = 0. Then,E}’s form ane-hi-
erarchical structure.

We consider the corresponding partitionpf

n=0m,....0,) (1112)
Then, the coordinateg,- = (1, ..., 7;) consist of all
Niys, = Prob {z;, = =xz;, =1} (112)

The correspondinge-affine coordinates are given by the exfor 1 < s < k. All the marginal distributions of: random

pectation parameters = (1.1)
na = E[X4]. (99)
ForA =iy, ...
na=E [z, 15 ]=Prob {z; =1, ..., z;, =1}. (100)

The relations among the coordinate systemg 4, and.
are given by the following theorem.

Theorem 9:
log(pr/po-0) = (B_l)i 0.4 (101)
~ .

ba = ZBA log(pr/po---0) (102)

pr=Y_ Bhna, na=)Y (Bil):pl (103)
A

6a=>_ B 1og{ <Z Béw) / po...o} (104)
T B

A= P00-0 ) (B’l)j1 exp {Z (Bfl); 93} . (105)

Proof: Given a probability distributiop(z), we have

p) = préi(®),  poo=1-Y p (106)
I

log p(z) = Z(IngI) ér(z) + (log po...0) [1 - Z 51(-"3)] -
I
(107)
On the other hand, from (85) we have

lowp(a) = Y04 %0 = Y004 (B7) i) (108)
A

variablesz;, , ..., x;, are completely determined hy,_. For
any k, we can define thé-cut coordinates

i = (M Op) - (113)

C. Orthogonal Decomposition of Interactions and Entropy

Givenp(z), p® (z) = [[™ pis the point closest tp among
those that do not have intrinsic interactions more tharari-
ables. The amount of interactions higher thais defined by
Dip : p™)]. Moreover,Dy(p) = D[p® : p*~1] may be in-
terpreted as the degree of purely ordenteractions among
variables. We then have the following decomposition.

From the orthogonal decomposition, we have a new invariant
decomposition of entropy and information, which is different
from those studied by many researchers as the decomposition
of entropy of a number of random variables.

Theorem 10:
Dlp : pol =Y _ Dx (114)
k=1
H(Xy, ..., X)) =Y H(X;)=> Dy  (115)
=1 k=2
I(Xy, ..., X,) =) _ Dy (116)
where
I(Xb 7Xn):ZH(XZ)_H(X17 7Xn)'

D. Extension to Finite Alphabet

We have so far treated binary random variables. The hierar-
chical structure of interactions and the decomposition of diver-
gence or entropy holds in the general case. We consider the case
whereX, ..., X, are random variables taking on a common
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finite alphabet sed = {0, 1, ..., m}. The argument is ex- The corresponding-coordinates are given by
tended easily to the case whekg take on different alphabet ]
. . . p(O, L, 0)
sets.A;. Let us define the indicator functions f&f; by 0;(x;) = log (0.0, 0) (122)
1 T =a
8 (xi) =1 117 x;, x4, 0)p(0, 0, 0
£(w:) {0, T, #a (117 05 (i, 7;) = log plwi; 2;: Ol ) (123)

p(-Tiv 07 0)p(07 Ty, 0)
wherea d(.en.otes any (?I.ement IA. . O123(w1, To, 3)
Let the joint probability ofe = (a4, ..., a,) bep{: %> The
e A ; ; : _ ‘p(‘Tb €2, ‘T3)p($17 T2, 0)p($17 07 ‘T3)p(07 T2, ‘T3)
joint probability functionp(z) is now written as = log
p(xlv 07 0)]7(0, T2, 0)])(0, 07 $3)p(07 07 0)

pl@)= Y pire 88 (en) 857 () - 87 (). (118) (124)

@L; e Bn When#éi23(x1, 22, 23) = 0 holds identically, there are no in-
trinsic interactions among the three, so that all interactions are
pairwise in this case. Whe); = 0, 6,23 = 0, there are no in-

n s ca " teractions so that the three random variables are independent.
log p(z) = Z Z Z Oi a6 () - 67k (ea) = (119)  Givenp(xy, 2, 3), the independent distributigt) € E,
k=1 is easily obtained by

We now expandog p(z) as

wherea; stands for nonzero elements.dfandi; < --- < . (1) _ 125
The coefficientsd’s form the #-coordinate system. Here, the (@1 w2, wa) = pley)plz2)ples). (125)
term representing interactionsiofariablesX; , ..., X;, have However, it is difficult to obtain the analytical expression of
a number of components &ll_jji‘ik. . In generalp € E> which consists of distributions having
The corresponding coordinates consist of pairwise correlations but no intrinsic triplewise interactions, is
written in the form
Mt =B [ (i) - 60 ()] 3
=Prob {z;, = a1, ..., z;, = ar} (120) logp(wy, w2, 73) = 291(@) + Zeii(xi’ zj) — . (126)
which represent the marginal distributions &f variables Thep(® is the one that satisfies
Xiy oo X4y -
We can then define the-cut, (1, , 8;+) in which,_ and P(z:) =p(zi) (127)
0,+ are orthogonal. Givep(z), we can define _
o . P Plai, ;) =p(ai, ;). (128)
(k) i
k _
p®(@) =[] o) VI. HIGHER ORDER MARKOV PROCESSES

which has the same marginals @) up to k variables, but ~ As another example of thestructure, we briefly touch upon
has no intrinsic interactions more thamandom variables. The the higher order Markov processes of the binary alphabet. The
orthogonal decompositions @ and mutual information in  kth-order Markov process is specified by the conditional prob-
terms ofD;,’s hold as before. ability of the next output:
k
E. Continuous Distributions p(r]a") (129)
It was difficult to give a rigorous mathematical foundatiofVherez"* = z1zz -~ 1S the past sequence bfletters. We
to the function spacé = {p(z)} of all the density functions define functionsx: {0, 1}* — R anda
p(g:) > 0 with r'espect to the Lebesgue measure on the real (a:") =logp (1 | a:") (130)
R". Recently, Pistonet al. [35], [36] have succeeded in con-
structing information geometry in the infinite-dimensional case, @ (z*) = logp (0 |2*) =log{1-p(1|2*)}. (131)
although we do not enter in its mathematical details.
Roughly speaking, thg-coordinates of is the density func-
tion itself, n(z) = p(x), and thed-coordinates are the function

Then, the Markov chain is specified 12} parametersy(z*),
«* taking on any binary sequences of length
For an observed long data sequende = z;---zy, let
8(z) = log p(z). (121) f(z*) be the relative number of subsequenteappearing in
zT. The Markov chain is an exponential family whenis suf-
They are dually coupled. ficiently large, andf(z*)’s are sufficient statistics. The prob-
We define higher order interactions amomg variables ability of =7 is written in terms of the relative frequencies of
z1, ..., Tn. In order to avoid notational complications, wevariousk + 1 letter sequences®l = ;-1 andz*0 =
show only the case of = 3. The three marginals and threer; - - - ;0
joint marginals of two variables are given by(z;) and ‘ ‘ o 4
m:j(z;, ;), respectively. They are obtained by integratiné’(xT’ ) =exp {Za(xk) F(=*1) + Za(“’k) f(a:"O)}.
mas(w1, T2, T3). (132)
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Hence, thé:th-order Markov chain forms asflat manifold £y, 0> = (611, 6111) (144)

of 2¥ dimensions. The set of Markov chains of various orders B B

naturally has the hierarchical structure f1.1 = (10) +@(00) — (00) — ©(10) (145)
E,cE,cEsC--- (133) 0111 204(11) + 04(00) +a(01) +a(10) (146)

whereE), is the Bernoulli process (independent and identically — a(10) — a(01) — @(00) —a(11). (147)

distributed process) anHl, is the first-order Markov chain.  \we can see here tha#t., and 6,1, together show how the

In order to decompose the degree of dependency of a Mark@¥rkov structure is apart from the first-order one, because
chain into various orders, we use the following frequencies ofgjgse coordinates are orthogonalithy .
served from the sequengé. In order to avoid complicated no-  The projections to lower order Markov chains are defined in

tations, we use as an exemple the second-order Markov Chif same way as before, and we have the following decomposi-
but generalization is easy. We define random variables relatggh-

to a sequence by

k
f1.. = relative frequency of (134) Dlp : po]=>_D [p(z) : p(z_l)} (148)
=0
Jua. = relative frequency of 1 (135) wherep(® is the projection to théth-order Markov chain and
f1.1 = relative frequency ofz1 (136) p{~1 is a fair Bernoulli process (that ig; = 1/2).
wherez is arbitrary VIl. CONCLUSION
fi11 = relative frequency of 11. (137)  The present paper used information geometry to elucidate the
hierarchical structures of random variables and their quasi-or-
We summarize their expectations as thogonal decomposition. A typical example is the decomposi-
tion of interactions among binary random variables into a
m=E[fi.], = E[fu] quasi-orthogonal sum of interactions among exakthandom
variables. The Kullback—Leibler divergence, entropy, and infor-
ma1 = E[f14], mi1 = E[fiu]. (138) ¢ by

mation are decomposed into a sum of nonnegative quantities

They form a mixture affine coordinate system to specify ti@&pPresenting the ordérinteractions. This is a new resultin in-
second-order Markov chain, and are functions(f0), (01), fprmauon theory. This problem is important for analyzing joint
a(10), ande(11). Higher order generalization is easy. In ordelifing patterns of an ensemble of neurons. The present paper
to obtain the third-order Markov chain, for example, we obta@Ves & method of extracting various degrees of interactions
eight f’s by adding- and1 in the suffix of eachy, for example, @mong these neurons. _ _ _
fi... and f,..; emerge fromf,... We then have eight quantities The present theories of hierarchical structures can be appli-
whose expectations form thecoordinates. cable to more general cases including mixture families. Appli-
The coordinate); is responsible only for the Bernoulli struc-cations to higher order Markov chains are briefly described.
ture. Therefore, if the process is Bernoulji, determines its
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