Automatic Feature Induction for Text Classification

Jason Rennie
jrennie@ai.mit.edu

Joint work with Tommi Jaakkola.
Definition of Spam is Personal

Subject: Win up to $50--Help out fellow MIT students
From: Alcohol Study <jgut@mit.edu>
Date: Sat, 07 Dec 2002 16:24:17 -0500
To: mitalcoholstudy@yahoo.com

Do you want to be entered into a lottery to win cash prizes? If so, take a minute and fill out this simple survey at http://web.mit.edu/jgut/www/Survey.htm. Winners will be contacted through another web page (/winners.htm) and will be notified using code words given at the bottom of the survey. Thank you for your participation.
Spam is constantly changing

- Unique Subject strings (e.g. [udxzic]) to avoid hash-matching
- Random From addresses (e.g. xixnsd@naver.com) to avoid replies
- Friendly Subject/body text (e.g. “Unbelievable, I’m your neighbor!”) to make you read it
- “Unsubscribe” URL to confirm e-mail addresses
- Interesting use of HTML comments (e.g. “En<!–foo–>gland”)

Every time we discover a feature to catch spam, the spammers will find a work-around...
The Problems with Current Spam Filters

• Most spam filters lex messages in a fixed way.
 – Look for words and/or a pre-defined set of features.

• When spammers adapt, a human must find new features to catch and add them to the system.

• Leads to endless cycle of trailing the spammers—is there a better way?
What types of features are there?

- Many of these are simple string-matches (e.g. “Dear”)
- Many others are simple regular expressions (e.g. 3 consecutive 8-bit characters in HTML comment)
A Better Way: Feature Induction

- Learn features automatically: either fixed strings or simple regular expressions.
- Huge space of possible features. How do we handle it?
Compression

Standard compression problem:

- E-mails and labels (ham/spam) are at one end of wire.
- Copy of e-mails at other end of wire.
- What is fewest number of bits needed to transmit labels?
Minimum Description Length

• Concept introduced by Jorma Rissanen (1978).

• Idea: Best generalization achieved by smallest encoding of training examples.
MDL: Rule List Example

• Default encoding: each label requires one bit.

• Consider rule: any message containing “sex” is spam.

• Say 65 training messages include “sex”: 60 are spam, 5 are not.

• Encoding of rule requires $3 \log(26) = 14$ bits plus 1 bit = 15 bits.

• New encoding of labels requires average of $H(\text{Binom}(\frac{60}{65}, \frac{5}{65})) = 0.39$ bits per label: 25 bits.

• Improvement: $65 - (25 + 15) = 25$ bits
Simple MDL Algorithm

• Let length = (# examples)
• Let ruleSet = {}
• while (length < oldLength)
 – foreach newRule
 – calcLength({ruleSet, newRule})
 – ruleSet = {ruleSet, bestNewRule}
 – length = calcLength(ruleSet)
Rule List: Examples of Learned Features

-x comp.os.xwindows
-windows comp.os.ms-windows.misc
-car rec.autos
-for sale misc.forsale
turk talk.politics.mideast
486 comp.sys.ibm.pc.hardware
3.1 comp.os.ms-windows.misc
-$ misc.forsale
condition misc.forsale
Regular Expressions

• Cost of rule is now encoding of the regular expression.

• Potential features:
 – Toll-free telephone numbers
 – HTML comments (recall “En<!–foo–>gland”)
 – “Dear (something)”
 – URLs without “http://”
The Bad News

• Inherently tied to a classifier
• Naive implementation is exceedingly slow
• Not clear how to handle counts (non-binary features)
The Good News

- MDL approach learns the most appropriate, most general features for text classification
- Finds digit, punctuation, etc. features just as easily as alphabetic features
- Automatically learns *new* features to handle new types of spam (given labeled examples to learn from)
- Learning is personalized
Related Work

- Language Segmentation (de Marcken 1996)
 - Also used MDL approach.
 - Excellent way to learn parts-based decomposition of objects.

- String Kernels (Haussler 1999, Lodhi et. al. 2001)
 - Project document into feature space of substrings of length n or less, find linear decision boundary.
 - Also very computationally expensive.