
Learning with Text

Jason Rennie
jrennie@csail.mit.edu

1

Text Classification

• What is the topic of this thread?

• What restaurant does it discuss?

• Are the reviews positive or negative? Who likes it, who
doesn’t?

• What aspects do they like/dislike?

How did you figure this out?

2

Outline

• Topic Classification

• Compression as Learning

• Learning with Sequences (Information Extraction)

3

Topic Classification

• Assumption: “bag-of-words” is enough.

• Presence of “keywords” tend to identify topic.

Keyword examples:

• revenue, quarter, sales, year, billion, profit, share

• surgery, skin, patient, overdose, cardiac, brain

• skate, Messier, player, ice, league, penalty, blue

4

Representation

From: dyer@spdcc.com (Steve Dyer)

Subject: Re: food-related seizures?

My comments about the Feingold Diet have no relevance to your

daughter’s purported FrostedFlakes-related seizures. I can’t imagine

why you included it.

↓
food 1

seizures 2

diet 1

catering 0

religion 0

.

..
.
..

5

Representation

• Punctuation is removed, case is ignored, words are separated
into tokens. Known as “feature vector” or “bag-of-words”
representation.

• Vector length is size of vocabulary. Common vocabulary size is
10,000-100,000. Classification problem is very high dimensional.

6

Topic Classification

• Represent document as vector of word counts.

• Can use any number of supervised learning techniques to learn
parameters (SVM, RLSC, RLR, AdaBoost, etc.)

• “Keywords” will get largest weights.

7

Word Weighting

• Better results are achieved using transformed weights instead
of raw counts.

• Term frequency: xi = log(1 + xi)

• Inverse Doc. frequency: xi = xi log
(

total # docs
docs w/term

)

• Length normalization: xi = xi

‖~x‖

8

Informative Words

• IDF is a sort of informativeness criterion

• Can we do better?

• Keywords tend to occur somewhat rarely.

• Keywords also tend to be bursty

– Don’t occur in many documents

– But, high frequency when they do occur

• Suggests a mixture model...

9

Mixture Models

• Randomly selects between two
different models

• For example

– Prior model (off-topic)

– High frequency model (on-topic)
1 2

• Can capture distributions that have two different “modes” of
operation.

• (Simple) Unigram model: pS(d; θ) = θh(1− θ)n−h

• Mixture of two unigrams:

pM (d; λτ , τ1, τ2) = λττh
1 (1− τ1)n−h + (1− λτ)τh

2 (1− τ2)n−h

10

Mixture Models

• Like having two weighted coins, each with a different chance of
heads

• For each thread, randomly choose a coin.

• For each word position, flip coin.

• Heads: chosen word occurs.

• Tails: some other word occurs.

11

Informative Words

• Informative words have a peaked distribution.

– They occur with high frequency in a few threads

• Mixture should provide much better fit than unigram

• Idea: train mixture, simple models, use log-odds ratio

• Informativeness score:

– Find maximum-likelihood parameters for mixture: λτ , τ1, τ2

– Find maximum-likelihood parameter for simple unigram: θ

– Calculate log-odds ratio:

score = log
pM (d; λτ , τ1, τ2)

pS(d; θ)

12

Informal Communication

• There are 4 billion web pages

• There are 4 billion e-mails sent out every day

Informal communication:

• is threaded, and

• has author information.

13

Informative Words

• Author information can help us identify uninformative words.

• Again look at mixture model fit.

• This time, look at author statistics.

• h is number of occurrences for a particular author

• Find maximum likelihood parameters: λα, α1, α2

14

Informativeness Criterion

• Score words by log-odds of thread-mixture and author-mixture:

score = log
pM (~w; λτ , τ1, τ2)
pM (~w; λα, α1, α2)

15

Some Experiments

• Restaurant name extraction:

F1

Baseline 52.8%

IDF 53.2%

thread-simple log-odds 53.2%

thread-author log-odds 54.0%

16

Text Classification

• What is the topic of this thread?

• What restaurant does it discuss?

• Are the reviews positive or negative? Who likes it, who
doesn’t?

• What aspects do they like/dislike?

How did you figure this out?

17

Language Understanding

• We:

– translate the document into an internal representation that
is easy to manipulate. We “understand” the document.

• We:

– have architechture designed for quick language acquisition,

– have years of experience using language,

– are embodied,

– can clarify misunderstandings through interaction, and

– experience concepts used in language.

18

Language Understanding

• Computers:

– see the world as 1s and 0s.

Computers don’t have a chance!
Or do they?

19

How We Learn

• Few people have “photographic” memory.

• We usually understand and remember things by associating
them with concepts we know.

• We learn/understand most quickly when something is closely
related to what we know; we have learning something that is
unrelated to what we know.

We learn most easily when we can compress the new information.

20

Minimum Description Length

• Concept introduced by Jorma Rissanen (1978).

• Idea: Best generalization achieved by smallest encoding of
training examples.

21

Compression as Learning

Learning problem:

• Documents and labels (e.g. ham/spam) at one end of wire.

• Copy of documents at other end of wire.

• What is fewest number of bits needed to transmit labels?

SPAM

HAM

SPAM Transmission Wire

22

Encoding Length

Must encode:

• Parameters that specify encoding of labels (prior dist.)

• Labels of examples (conditional dist.)

Total encoding length is

− log p(~θ)−
∑

i

log p(yi|xi; ~θ)

23

Topic Classification

• Substrings may provide better compression than words

– Suffixes, prefixes, roots may be more general

• Consider rule-based classification

– If document contains string, assign category label

• Length of rule is (1) encoding of string, plus (2) encoding of
label

24

A Simple MDL Algorithm

• Let length = (# examples) · log2(# labels)

• Let ruleSet = {}
• while (length < oldLength)

– foreach newRule

– calcLength({ruleSet, newRule})
– ruleSet = {ruleSet, bestNewRule}
– length = calcLength(ruleSet)

• Related to Boosting

25

MDL Learning of String Features

x comp.os.xwindows

windows comp.os.ms-windows.misc

car rec.autos

for sale misc.forsale

turk talk.politics.mideast

486 comp.sys.ibm.pc.hardware

3.1 comp.os.ms-windows.misc

$ misc.forsale

t condition misc.forsale

26

Encoding Real-Valued Parameters

• How to encode real-valued parameters?

• Exact encoding seems impossible.

• Limited-precision encoding is tricky.

– How to choose the level of precision?

27

The Bits-Back Argument (Hinton & Zemel, 1994)

• Let p(θ) be prior distribution on parameters

• Send θ with probability q(θ)

• Encoding length:

−
∫

q(θ) log p(θ)dθ

28

The Bits-Back Argument

• Choice of θ (from q) can encode other information: H(q) bits

• Net parameter encoding length is

L(p, q) = −
∫

q(θ) log p(θ)dθ −H(q)

=
∫

q(θ) log
q(θ)
p(θ)

dθ

= KL(q||p)

• Encoding length of data is

−
∑

i

log p(yi|xi; ~θ)

29

Bits-Back: Example

• Let the conditional distribution be log-linear:

log p(yi|xi; ~θ) ∝ ~φ(xi, yi) · ~θ

• Let prior, p(θ), be a zero-mean, constant-width (σ2) Gaussian.

• Let q(θ) be a constant-width (σ2) Gaussian with mean ~θ.

• Net parameter encoding length is

‖~θ‖2
2σ2

+ constant

30

Bits-Back: Example

• Total encoding length is:

−~f(xi, yi) · ~θ + log
∑

y

e
~f(xi,y)·~θ +

‖θ‖2
2σ2

.

• Equivalent to maximum-likelihood objective for Regularized
Logistic Regression.

• Kernel “trick” can be applied to incorporate high-dimensional
feature spaces.

31

String Kernels

• MDL string learning algorithm enumerates a huge range of
features each round—not very efficient.

• Kernels allow efficient manipulation of high-dimensional feature
spaces.

• Lodhi et al. (2001) showed how to efficiently calculate string
kernels.

32

String Kernels

c-a c-t a-t b-a b-t c-r a-r b-r
~φ(cat) λ2 λ3 λ2 0 0 0 0 0
~φ(car) λ2 0 0 0 0 λ3 λ2 0
~φ(bat) 0 0 λ2 λ2 λ3 0 0 0
~φ(bar) 0 0 λ2 0 0 0 λ2 λ3

K(car, cat) =
~φ(car)

‖~φ(car)‖
~φ(cat)

‖~φ(cat)‖
=

λ4

2λ4 + λ6

33

String Kernels

• Use dynamic programming to calculate kernel efficiently

• Let i = {i1, . . . , i|i|} be an increasing sequence of indices

• s[i] is a substring of s

• Define modified feature function:

~φ′u(s) =





λ|s|−i1+1 if ∃i s.t. s[i] = u

0 otherwise

Measures from beginning of substring in s to end of s.

34

String Kernels: Recursion

K ′
0(s, t) = 1, ∀s, t

K ′
i(s, t) = 0, if min(|s|, |t|) < i

Ki(s, t) = 0, if min(|s|, |t|) < i

K ′
i(sx, t) = λK ′

i(s, t) +
∑

j:tj=x

K ′
i−1(s, t[1 : j − 1])λ|t|−j+2, i < n

Kn(sx, t) = Kn(s, t) +
∑

j:tj=x

K ′
n−1(s, t[1 : j − 1])λ2

35

String Kernel Results (Lodhi et al., 2001)

F1 Precision Recall

3 S-K 0.925 0.981 0.878

5 S-K 0.936 0.992 0.888

6 S-K 0.936 0.992 0.888

W-K 0.925 0.989 0.867

36

Sequence Classification

• So far, we’ve dealt with single-label data:

{(~x1, y1), . . . , (~xn, yn)} (1)

• Many Natural Language tasks deal with sequences of labels:

{(~x1, ~y1), . . . , (~xn, ~yn)} (2)

• Training one set of parameters per class is not practical.

37

Information Extraction

• How do we identify restaurant names, company names,
locations, etc.?

• Syntactic features: punctuation, capitalization, spelling

• Context features: neighboring words, part-of-speech

• Labels of neighboring words.

IE is a sequence classification problem

N N N R R N L L

I ate at Blue Room in Kendall Square

38

Hidden Markov Models

• For document classification, we assumed document labels
didn’t depend on each other.

• For information extraction, label depends on labels of
neighboring words

• HMMs assume that observed word depends on label, each label
depends on previous label

Y1 Y3

X2 X3

Y2

X1

39

Hidden Markov Models

• HMMs are a generative model.

• Composed of

– Model for producing next label: p(y(t)|y(t−1))

– Model for producing words: p(x(t)|y(t))

• Traning consists of counting

• Labeling involves finding maximum-likelihood sequence

– Forward-backward algorithm is used for efficient calculation

40

Generative vs. Discriminative

• Discriminative models work best for single-label classification,
what about for sequences?

• Problem: we can’t train one set of parameters per possible
label-sequence.

• But, like HMMs, if we only allow dependence between adjacent
labels, learning can be made efficient.

41

Conditional Random Fields (Lafferty et al., 2001)

• State features: function of current observation and state

• Transition features: function of current state and previous state

• Global feature vector for an example:

~F (~x, ~y) =
∑

i

~f(~x, ~y, i)

Y1 Y3

X2 X3

Y2

X1

t
Y0

t t

s s s

t

42

Conditional Random Fields

• Log-linear conditional model:

log p(~y|~x) = ~λ · ~F (~x, ~y)− log Z~λ

• Let {(~x1, ~y1), . . . , (~xn, ~yn)} be training data.

• Want to maximize the likelihood of the labels:

L~λ =
∑

i

log p(~yi|~xi)

43

Conditional Random Fields

• Need to evalulate the gradient (Sha & Pereira, 2003):

∇L~λ =
∑

i

[
~F (~xi, ~yi)− Ep(~y|~xi)

~F (~xi, ~y)
]

• Maximum is achieved when expectations match empirical
counts.

• Efficient calculation of expectation is similar to
forward-backward HMM algorithm

44

Conditional Random Fields

• Define the transition matrix:

Mi[y, y′] = exp
(
~λ · ~f(~x, ~y, i)

)

• Define forward and backward vectors:

~αi =





~αi−1Mi 1 ≤ i ≤ n

~1 i = 0 (start state)

~βT
i =





Mi+1
~βT

i+1 1 ≤ i ≤ n

~1 i = n + 1 (end state)

45

Conditional Random Fields

• The jth element of ~αi is the (unnormalized) forward probability
of being in state j at step i.

• The jth element of ~βi is the (unnormalized) backward
probability of being in state j at step i.

46

Conditional Random Fields

• The normalization constant is

Z~λ = ~αn ·~1T ,

• The expectation is calculated individually for each feature:

Ep(~y|~x)F (~x, ~y) =
∑

~y

p(~y|~x)F (~x, ~y)

=
∑

i

αi−1(fi ∗Mi)βT
i

Z~λ

• fi is the feature corresponding to the entry of the M matrix

• ∗ denotes component-wise matrix multiplication

47

CRF: Experiments

• Lafferty et al. (2001) compared CRFs vs. HMMs for
part-of-speech tagging.

error oov error

HMM 5.69% 45.99%

CRF 5.55% 48.05%

CRF† 4.27% 23.76%

Table 1: † - with spelling features

• SVM version: Max-Margin Markov Networks (Taskar et al.,
2003)

48

Summary

• Text Learning occurs in many different forms

• Informal communication presents interesting problems

• Mixture models can be used to find “informative” words

• Compression serves as a framework for learning

– Connection to regularized maximum likelihood training

• Information extraction problems take the form of sequence
learning

49

References

Hinton, G. E., & Zemel, R. S. (1994). Autoencoders, minimum
description length, and Helmholtz free energy. Advances in
Neural Information Processing Systems 6.

Lafferty, J., McCallum, A., & Pereira, F. (2001). Conditional
random fields: Probabilistic models for segmenting and labeling
sequence data. Proceedings of the Eighteenth International
Conference on Machine Learning.

Lodhi, H., Shawe-Taylor, J., Cristianini, N., & Watkins, C. J. C. H.
(2001). Text classification using string kernels. Advances in
Neural Information Processing Systems 13.

Sha, F., & Pereira, F. (2003). Shallow parsing with conditional
random fields. Proceedings of HLT-NAACL.

Taskar, B., Guestrin, C., & Koller, D. (2004). Max-margin markov

50

networks. Advances in Neural Information Processing Systems
16.

51

