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PART I: Numerical Python

Numerical Python (“Numpy”) adds a fast multidimensional array facility to Python. This
part contains all you need to know about “Numpy” arrays and the functions that operate
upon them.
1



1. Introduction

This chapter introduces the Numeric Python extension and outlines the rest of the
document.

The Numeric Python extensions (NumPy henceforth) is a set of extensions to the Python programming lan-
guage which allows Python programmers to efficiently manipulate large sets of objects organized in grid-like
fashion. These sets of objects are called arrays, and they can have any number of dimensions: one dimensional
arrays are similar to standard Python sequences, two-dimensional arrays are similar to matrices from linear al-
gebra. Note that one-dimensional arrays are also different from any other Python sequence, and that two-dimen-
sional matrices are also different from the matrices of linear algebra, in ways which we will mention later in this
text.

Why are these extensions needed? The core reason is a very prosaic one, and that is that manipulating a set of
a million numbers in Python with the standard data structures such as lists, tuples or classes is much too slow
and uses too much space. Anything which we can do in NumPy we can do in standard Python – we just may
not be alive to see the program finish. A more subtle reason for these extensions however is that the kinds of
operations that programmers typically want to do on arrays, while sometimes very complex, can often be de-
composed into a set of fairly standard operations.  This decomposition has been developed similarly in many ar-
ray languages.  In some ways, NumPy is simply the application of this experience to the Python language – thus
many of the operations described in NumPy work the way they do because experience has shown that way to
be a good one, in a variety of contexts. The languages which were used to guide the development of NumPy in-
clude the infamous APL family of languages, Basis, MATLAB, FORTRAN, S and S+, and others. This heri-
tage will be obvious to users of NumPy who already have experience with these other languages. This tutorial,
however, does not assume any such background, and all that is expected of the reader is a reasonable working
knowledge of the standard Python language.

This document is the “official” documentation for NumPy. It is both a tutorial and the most authoritative source
of information about NumPy with the exception of the source code. The tutorial material will walk you through
a set of manipulations of simple, small, arrays of numbers, as well as image files. This choice was made be-
cause: 

• A concrete data set makes explaining the behavior of some functions much easier to motivate than simply
talking about abstract operations on abstract data sets;

• Every reader will have at least an intuition as to the meaning of the data and organization of image files, and 

• The result of various manipulations can be displayed simply since the data set has a natural graphical rep-
resentation. 

All users of NumPy, whether interested in image processing or not, are encouraged to follow the tutorial with
a working NumPy installation at their side, testing the examples, and, more importantly, transferring the under-
standing gained by working on images to their specific domain. The best way to learn is by doing – the aim of
this tutorial is to guide you along this “doing.”
2
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Here is what the rest of this part contains:

• “Installing NumPy” on page5 provides information on testing Python, NumPy, and compiling and install-
ing NumPy if necessary.

• “The NumTut package” on page 8 provides information on testing and installing the NumTut package,
which allows easy visualization of arrays.

• “High-Level Overview” on page 10 gives a high-level overview of the components of the NumPy system
as a whole.

• “Array Basics” on page 13 provides a detailed step-by-step introduction to the most important aspect of
NumPy, the multidimensional array objects.

• “Ufuncs” on page 28 provides information on universal functions, the mathematical functions which oper-
ate on arrays and other sequences elementwise.

• “Pseudo Indices” on page34 covers syntax for some special indexing operators.

• “Array Functions” on page 36 is a catalog of each of the utility functions which allow easy algorithmic pro-
cessing of arrays.

• “Array Methods” on page47 discusses the methods of array objects.

• “Array Attributes” on page 49 presents the attributes of array objects.

• “Special Topics” on page 51 is a collection of special topics, from the organization of the codebase to the
mechanisms for customizing printing.

• “Writing a C extension to NumPy” on page 61 is an tutorial on how to write a C extension which uses
NumPy arrays.

• “C API Reference” on page 68 is a reference for the C API to NumPy objects (both PyArrayObjects and
UFuncObjects).

• “Glossary” on page 77 is a glossary of terms.

• Reference material for the optional packages distributed with Numeric Python are described in the next part,
“Optional Packages” on page 79.

Where to get information and code

Numerical Python and its documentation are available at SourceForge (sourceforge.net; SourceForge addresses
can also be abbreviated as “sf.net”). The main web site is:

http://numpy.sourceforge.net
Downloads, bug reports, and patch facility, and releases are at the main project page, reachable from the above
site or directly at: http://sourceforge.net/projects/numpy

The Python web sites is www.python.org.

Many packages are available from third parties that use Numeric to interface to a variety of mathematical and
statistical software. 
3
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2. Installing NumPy

This chapter explains how to install and test NumPy, from either the source distribution or
from the binary distribution.

Before we start with the actual tutorial, we will describe the steps needed for you to be able to follow along the
examples step by step. These steps including installing Python, the NumPy extensions, and some tools and sam-
ple files used in the examples of this tutorial.

Testing the Python installation

The first step is to install Python if you haven’t already. Python is available from the Python project page at
http://sourceforge.net/projects/python. Click on the link corresponding to your platform, and follow the instruc-
tions described there.  When installed, starting Python by typing python at the shell or double-clicking on the
Python interpreter should give a prompt such as:

Python 2.1b2 (#12, Mar 23 2001, 14:01:30) [MSC 32 bit (Intel)] on win32
Type "copyright", "credits" or "license" for more information.
>>>

If you have problems getting this part to work, consider contacting a local support person or emailing python-
help@python.org for help. If neither solution works, consider posting on the comp.lang.python newsgroup (de-
tails on the newsgroup/mailing list are available at http://www.python.org/psa/MailingLists.html#clp).

Testing the Numeric Python Extension Installation

The standard Python distribution does not come as of this writing with the Numeric Python extensions installed,
but your system administrator may have installed them already. To find out if your Python interpreter has
NumPy installed, type import Numeric at the Python prompt. You’ll see one of two behaviors (throughout
this document, bold Courier New font indicates user input, and standard Courier New font indicates
output):

>>> import Numeric
Traceback (innermost last):
 File "<stdin>", line 1, in ?
ImportError: No module named Numeric
>>>

indicating that you don’t have NumPy installed, or:

>>> import Numeric
>>> 

indicating that you do. If you do, go on to the next step. If you don’t, you have to get the NumPy extensions. 

Installing NumPy

The release facility at SourceForge is accessed through the project page, http://sourceforge.net/projects/numpy.
Click on the “numpy” releases and you will be presented with a list of the available files. The files whose names
end in “.tar.gz” are source code releases. A .zip file is the source code in Windows format. The other files are
binaries for a given platform. 

It is possible to get the latest sources directly from our CVS repository using the facilities described at Source-
Forge. Note that while every effort is made to ensure that the repository is always “good”, direct use of the re-
pository is subject to more errors than using a standard release.
5



Installing on Windows

On Windows, we currently have available for each release an .exe file that should be executed. Doing so will
install Numeric Python into your Python distribution. There are also .exe files for each of the optional packages.
Note that some of the optional packages require other optional packages.

If you wish to build from source on Windows, the Unix procedure described below can be used, running python
in a command-line tool, on the Windows-format sources in the .zip file.

In general, there may not be a prebuilt version of a particular kind available in every minor release. If you need
a prebuilt version, choose the most recent version available. 

Releases prior to 20 had binary .zip files for Windows; these have been replaced by the .exe files that contain
genuine installers.

Installing on Unix

The source distribution should be uncompressed and unpacked using the the tar program:

csh> tar xfz Numeric-n.m.tar.gz
Follow the instructions in the top-level directory for compilation and installation. Note that there are options
you must consider before beginning. Installation is usually as simple as:

python setup_all.py install
However, please (please!) see the README itself for the latest details.

Important Tip

Just like all Python modules and packages, the Numeric module can be invoked using either 
the import Numeric form, or the from Numeric import ... form.  Because most 
of the functions we’ll talk about are in the Numeric module, in this document, all of the code 
samples will assume that they have been preceded by a statement: 

from Numeric import *

At the SourceForge...

The SourceForge project page for Numerical Python is at http://sourceforge.net/projects/numpy. On this project
page you will find links to:

• The Numeric Discussion List

You can subscribe to a discussion list about Numeric python using the project page at SourceForge. The
list is a good place to ask questions and get help. Send mail to numpy-discussion@lists.sourceforge.net.

• The Web Site

Click on “home page” to get to the Numeric Python Home Page, which has links to documentation and
other resources, including tools for connecting Numerical Python to Fortran.

• Bugs and Patches

Bug tracking and patch-management facilities is provided on the SourceForge project page.

• CVS Repository

You can get the latest and greatest (albeit less tested and trustworthy) version of Numeric directly from our
CVS repository.

• FTP Site

The FTP Site contains this documentation in several formats, plus maybe some other goodies we have lying
6
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3. The NumTut package

This chapter leads the user through the installation and testing of the NumTut package,
which should have been distributed with this document.

Testing the NumTut package

This tutorial assumes that the NumTut package has been installed. If it hasn’t, see below, “Possible reasons for
failure” on page 8). This package contains a few sample images and utility functions for displaying arrays and
the like. To find out if NumTut has been installed, do:

>>> from NumTut import *
>>> view(greece)

If a picture of a greek street shows up on your screen, you’re all set, and you can go to the next chapter.

Possible reasons for failure

>>> import NumTut
Traceback (innermost last):
  File "<stdin>", line 1, in ?
ImportError: No module named NumTut

This message indicates that you do not have the NumTut package installed in your PythonPath. NumTut is dis-
tributed along with the Numeric source distribution in the Demo subdirectory. It also is available at Source-
Forge as a separate download. Copy the NumTut subdirectory somewhere into your Python path, or just
execute python from the Demo directory. 

If you have installed Numeric from a binary distribution, NumTut may not be included. Get the source distri-
bution for the tutorial.

On Win32, the NumTut directory can be placed in the main directory of your Python installation. On Unix, it
can be placed in the site-packages directory of your installation.
8
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>>> import NumTut
Traceback (innermost last):
[...]
ConfigurationError: view needs Tkinter on Win32, and either threads or 
the IDLE editor"

or:

ConfigurationError: view needs either threads or the IDLE editor to be 
enabled.

On Win32 (Windows 95, 98, NT), the Tk toolkit is needed to view the images. Additionally, either the Python
interpreter needs to be compiled with thread support (which is true in the standard win32 distribution) or you
need to call the NumTut program from the IDLE interactive development environment.

If you do not wish to modify your Python installation to match these requirements, you can simply ignore the
references to the demonstrations which use the view() command later in this document. Using NumPy does
not require image display tools, they just make some array operations easier to understand.

Unix

On Unix machines, NumTut will work best with a Python interpreter with Tk support (not true in the default
configuration), with the Tkinter GUI framework available and optionally with the tkImaging add-on (part of the
Python Imaging Library). If this is not the case, it will try to use an external viewer which is able to read PPM
files. The default viewer is ’xv’, a common image viewer available from ftp://ftp.cis.upenn.edu/pub/xv. If xv is
not installed, you will get an error message similar to:

>>> import NumTut
Traceback (innermost last):
[...]
ConfigurationError: PPM image viewer ’xv’ not found

You can configure NumTut to use a different image viewer, by typing e.g.:

>>> import NumTut
>>> NumTut.view.PPMVIEWER = ’ppmviewer’
>>> from NumTut import *
>>> view(greece)

If you do not have a PPM image viewer, you can simply ignore the references to the demonstrations which use
the view() command later in this document. Using NumPy does not require image display tools, they just
make some array operations easier to understand.
9



4. High-Level Overview

In this chapter, a high-level overview of the extensions is provided, giving the reader the
definitions of the key components of the system.  This section defines the concepts used by
the remaining sections.

Numeric Python consists of a set of modules:

• Numeric.py (and its helper modules multiarray and umath.)

This module defines two new object types, and a set of functions which manipulate these objects, as well as
convert between them and other Python types.  The objects are the new array object (technically called
multiarray objects), and universal functions (technically ufunc objects).   

• Other optional packages shipped with Numeric are discussed in “Optional Packages” on page 79. Among
these a packages for linear algebra, random numbers, masked or missing values, and Fast Fourier Trans-
forms.

Array Objects

The array objects are generally homogeneous collections of potentially large numbers of numbers.  All numbers
in a multiarray are the same kind (i.e. number representation, such as double-precision floating point).  Array
objects must be full (no empty cells are allowed), and their size is immutable.  The specific numbers within
them can change throughout the life of the array.

Note: In some applications arrays of numbers may contain entries representing invalid or missing values. An
optional package “MA” is available to represent such arrays. Attempting to do so by using NaN as a value may
lead to disappointment or lack of portability.

Mathematical operations on arrays return new arrays containing the results of these operations performed ele-
mentwise on the arguments of the operation.

The size of an array is the total number of elements therein (it can be 0 or more). It does not change throughout
the life of the array.

The shape of an array is the number of dimensions of the array and its extent in each of these dimensions (it can
be 0, 1 or more). It can change throughout the life of the array. In Python terms, the shape of an array is a tuple
of integers, one integer for each dimension that represents the extent in that dimension.

The rank of an array is the number of dimensions along which it is defined. It can change throughout the life of
the array. Thus, the rank is the length of the shape.

The typecode of an array is a single character description of the kind of element it contains (number format,
character or Python reference). It determines the itemsize of the array.

The itemsize of an array is the number of 8-bit bytes used to store a single element in the array. The total mem-
ory used by an array tends to its size times its itemsize, as the size goes to infinity (there is a fixed overhead per
array, as well as a fixed overhead per dimension).

To put this in more familiar mathematicial language: A vector is a rank-1 array (it has only one dimension along
which it can be indexed).  A matrix as used in linear algebra is a rank-2 array (it has two dimensions along
which it can be indexed).  There are also rank-0 arrays, which can hold single scalars -- they have no dimension
along which they can be indexed, but they contain a single number. 

Here is an example of Python code using the array objects (bold text refers to user input, non-bold text to com-
puter output):
10
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>>> vector1 = array((1,2,3,4,5))
>>> print vector1
[1 2 3 4 5]
>>> matrix1 = array(([0,1],[1,3]))
>>> print matrix1
[[0 1]
 [1 3]]
>>> print vector1.shape, matrix1.shape
(5,) (2,2)
>>> print vector1 + vector1
[ 2  4  6  8  10]]
>>> print matrix1 * matrix1
[[0 1] # note that this is not the matrix 
 [1 9]] # multiplication of linear algebra

If this example does not work for you because it complains of an unknown name “array”, you forgot to begin
your session with 

from Numeric import *
See page 6.

Universal Functions

Universal functions (ufuncs) are functions which operate on arrays and other sequences.  Most ufuncs perform
mathematical operations on their arguments, also elementwise.  

Here is an example of Python code using the ufunc objects:

>>> print sin([pi/2., pi/4., pi/6.])
[ 1.        ,  0.70710678,  0.5       ]
>>> print greater([1,2,4,5], [5,4,3,2])
[0 0 1 1]
>>> print add([1,2,4,5], [5,4,3,2])
[6 6 7 7]
>>> print add.reduce([1,2,4,5])
12 # 1 + 2 + 3 + 4 + 5

Ufuncs are covered in detail in “Ufuncs” on page28. 

Convenience Functions

The Numeric module provides, in addition to the functions which are needed to create the objects above, a set
of powerful functions to manipulate arrays, select subsets of arrays based on the contents of other arrays, and
other array-processing operations.

>>> data = arange(10) # convenient homolog of builtin 
range()
>>> print data
[0 1 2 3 4 5 6 7 8 9]
>>> print where(greater(data, 5), -1, data)
[ 0  1  2  3  4  5 -1 -1 -1 -1] # selection facility
>>> data = resize(array((0,1)), (9, 9))
>>> print data
[[0 1 0 1 0 1 0 1 0]
 [1 0 1 0 1 0 1 0 1]
 [0 1 0 1 0 1 0 1 0]
 [1 0 1 0 1 0 1 0 1]
 [0 1 0 1 0 1 0 1 0]
 [1 0 1 0 1 0 1 0 1]
11



 [0 1 0 1 0 1 0 1 0]
 [1 0 1 0 1 0 1 0 1]
 [0 1 0 1 0 1 0 1 0]]

All of the functions which operate on NumPy arrays are described in “Array Functions” on pa ge36.
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5. Array Basics

This chapter introduces some of the basic functions which will be used throughout the text.

Basics

Before we explore the world of image manipulation as a case-study in array manipulation, we should first de-
fine a few terms which we’ll use over and over again. Discussions of arrays and matrices and vectors can get
confusing due to disagreements on the nomenclature. Here is a brief definition of the terms used in this tutorial,
and more or less consistently in the error messages of NumPy.

The python objects under discussion are formally called “multiarray” objects, but informally we’ll just call
them “array” objects or just “arrays.” These are different from the array objects defined in the standard Python
array module (which is an older module designed for processing one-dimensional data such as sound files). 

These array objects hold their data in a homogeneous block of elements, i.e. their elements all have the same C
type (such as a 64-bit floating-point number). This is quite different from most Python container objects, which
can contain heterogeneous collections. (You can, however, have an array of Python objects, as discussed later).

Any given array object has a rank, which is the number of “dimensions” or “axes” it has. For example, a point
in 3D space [1, 2, 1] is an array of rank 1 – it has one dimension. That dimension has a length of 3. 

As another example, the array 

1.0 0.0 0.0
0.0 1.0 2.0

is an array of rank 2 (it is 2-dimensional). The first dimension has a length of 2, the second dimension has a
length of 3. Because the word “dimension” has many different meanings to different folks, in general the word
“axis” will be used instead. Axes are numbered just like Python list indices: they start at 0, and can also be
counted from the end, so that axis -1 is the last axis of an array, axis -2 is the penultimate axis, etc. 

There are two important and potentially unintuitive behaviors of NumPy arrays which take some getting used
to. The first is that by default, operations on arrays are performed element-wise. This means that when adding
two arrays, the resulting array has as elements the pairwise sums of the two operand arrays. This is true for all
operations, including multiplication. Thus, array multiplication using the * operator will default to element-
wise multiplication, not matrix multiplication as used in linear algebra. Many people will want to use arrays as
linear algebra-type matrices (including their rank-1 versions, vectors). For those users, the Matrix class pro-
vides a more intuitive interface. We defer discussion of the Matrix class until later. 

The second behavior which will catch many users by surprise is that functions which return arrays which are
simply different views at the same data will in fact share their data. This will be discussed at length when we
have more concrete examples of what exactly this means.

Now that all of these definitions and warnings are laid out, let's see what we can do with these arrays. 

Creating arrays from scratch

array() and typecodes

There are many ways to create arrays. The most basic one is the use of the array() function: 

>>> a = array([1.2, 3.5, -1])
to make sure this worked, do: 

>>> print a
13



[ 1.2  3.5 -1. ]
The array(numbers, typecode=None, savespace=0) function takes three arguments – the first
one is the values, which have to be in a Python sequence object (such as a list or a tuple). The optional second
argument is the typecode of the elements. If it is omitted, as in the example above, Python tries to find the one
type which can represent all the elements. The third is discussed in “Saving space” on page23. 

Since the elements we gave our example were two floats and one integer, it chose `float' as the type of the re-
sulting array. If one specifies the typecode, one can specify unequivocally the type of the elements – this is es-
pecially useful when, for example, one wants to make sure that an array contains floats even though in some
cases all of its elements are integers: 

>>> x,y,z = 1,2,3
>>> a = array([x,y,z]) # integers are enough for 1, 2 and 3
>>> print a
[1 2 3]
>>> a = array([x,y,z], Float) # not the default type
>>> print a
[ 1.  2.  3.]

Important Tip

Pop Quiz: What will be the type of an array defined as follows:

>>> mystery = array([1, 2.0, -3j])

Hint: -3j is an imaginary number.

Answer: complex

A very common mistake is to call array with a set of numbers as arguments, as in ar-
ray(1,2,3,4,5). This doesn’t produce the expected result as soon as at least two num-
bers are used, because the first argument to array() must be the entire data for the array -
- thus, in most cases, a sequence of numbers.  The correct way to write the preceding invoca-
tion is most likely array((1,2,3,4,5)).

Possible values for the second argument to the array creator function (and indeed to any function which ac-
cepts a so-called typecode for arrays) are: 

1. One type corresponding to single ASCII characters: Character.

2. One unsigned numeric type: UnsignedInt8, used to store numbers between 0 and 255.

3. Many signed numeric types:

• Signed integer choices: Int, Int0, Int8, Int16, Int32, and on some platforms, Int64 and
Int128 (their ranges depend on their size).

• Floating point choices: Float, Float0, Float8, Float16, Float32, Float64, and on some
platforms, Float128.

• Complex number choices: Complex, Complex0, Complex8, Complex16, Complex32,
Complex64, Complex128.

The meaning of these is as follows:

• The versions without any numbers (Int, Float, Complex) correspond to the int, float and
complex datatypes in Python.  They are thus long integers and double-precision floating point num-
bers, with a complex number corresponding to two double-precision floats.
14
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• The versions with a number following correspond to whatever words are available on the specific
platform you are using which have at least that many bits in them.  Thus, Int0 corresponds to the
smallest integer word size available, Int8 corresponds to the smallest integer word size available
which has at least 8 bits, etc.  The word sizes for the complex numbers refer to the total number of
bits used by both the real and imaginary parts (in other words, the data portion of an array of N
Complex128 elements uses up the same amount of memory as the data portions of two arrays of
typecode  Float64 with 2N elements).

4. One non-numeric type, PyObject.  Arrays of typecode PyObject are arrays of Python references, and
as such their data area can contain references to any kind of Python objects.

The last typecode deserves a little comment. Indeed, it seems to indicate that arrays can be filled with any Py-
thon objects. This appears to violate the notion that arrays are homogeneous. In fact, the typecode PyObject
does allow heterogeneous arrays. However, if you plan to do numerical computation, you're much better off
with a homogeneous array with a potentially “large” type than with a heterogeneous array. This is because a
heterogeneous array stores references to objects, which incurs a memory cost, and because the speed of com-
putation is much slower with arrays of PyObject's than with uniform number arrays. Why does it exist, then? 

A very useful feature of arrays is the ability to slice them, dice them, select and choose from them, etc. This fea-
ture is so nice that sometimes one wants to do the same operations with, e.g., arrays of class instances. In such
cases, computation speed is not as important as convenience. Also, if the array is filled with objects which are
instances of classes which define the appropriate methods, then NumPy will let you do math with those objects.
For example, if one creates an object class which has an __add__ method, then arrays (created with the Py-
Object typecode) of instances of such a class can be added together. 

Multidimensional Arrays

The following example shows one way of creating multidimensional arrays: 

>>> ma = array([[1,2,3],[4,5,6]])
>>> print ma
[[1 2 3]
 [4 5 6]]

The first argument to array() in the code above is a single list containing two lists, each containing three el-
ements. If we wanted floats instead, we could specify, as discussed in the previous section, the optional type-
code we wished: 

>>> ma_floats = array([[1,2,3],[4,5,6]], Float)
>>> print ma_floats
[[ 1.  2.  3.]
 [ 4.  5.  6.]]

This array allows us to introduce the notion of `shape'. The shape of an array is the set of numbers which define
its dimensions. The shape of the array ma defined above is 2 by 3.  More precisely, all arrays have a shape at-
tribute which is a tuple of integers.  So, in this case: 

>>> print ma.shape
(2, 3)

Using the earlier definitions, this is a shape of rank 2, where the first axis has length 2, and the seond axis has
length 3. The rank of an array A is always equal to len(A.shape). 

Note that shape is an attribute of  array objects. It is the first of several which we will see throughout this
tutorial. If you're not used to object-oriented programming, you can think of attributes as  “features” or “quali-
ties” of individual arrays. The relation between an array and its shape is similar to the relation between a person
and their hair color. In Python, it's called an object/attribute relation. 

What if one wants to change the dimensions of an array? For now, let us consider changing the shape of an array
without making it “grow.” Say, for example, we want to make the 2x3 array defined above (ma) an array of rank
1: 

>>> flattened_ma = reshape(ma, (6,))
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>>> print flattened_ma
[1 2 3 4 5 6]

One can change the shape of arrays to any shape as long as the product of all the lengths of all the axes is kept
constant (in other words, as long as the number of elements in the array doesn’t change): 

>>> a = array([1,2,3,4,5,6,7,8])
>>> print a
[1 2 3 4 5 6 7 8]
>>> b = reshape(a, (2,4)) # 2*4 == 8
>>> print b
[[1 2 3 4]
 [5 6 7 8]]
>>> c = reshape(b, (4,2)) # 4*2 == 8 
>>> print c
[[1 2]
 [3 4]
 [5 6]
 [7 8]]

Notice that we used a new function, reshape(). It, like array(), is a function defined in the Numeric
module. It expects an array as its first argument, and a shape as its second argument. The shape has to be a se-
quence of integers (a list or a tuple). Keep in mind that a tuple with a single element needs a comma at the end;
the right shape tuple for a rank-1 array with 5 elements is (5,), not (5). 

One nice feature of shape tuples is that one entry in the shape tuple is allowed to be -1.  The -1 will be auto-
matically replaced by whatever number is needed to build a shape which does not change the size of the array.
Thus: 

>>> a = reshape(array(range(25)), (5,-1))
>>> print a, a.shape 
[[ 0  1  2  3  4]
 [ 5  6  7  8  9]
 [10 11 12 13 14]
 [15 16 17 18 19]
 [20 21 22 23 24]] (5, 5)

The shape of an array is a modifiable attribute of the array. You can therefore change the shape of an array sim-
ply by assigning a new shape to it: 

>>> a = array([1,2,3,4,5,6,7,8,9,10]) 
>>> a.shape
(10,) 
>>> a.shape = (2,5) 
>>> print a
[[ 1  2  3  4  5]
 [ 6  7  8  9 10]]
>>> a.shape = (10,1) # second axis has length 1
>>> print a
[[ 1]
 [ 2]
 [ 3]
 [ 4]
 [ 5]
 [ 6]
 [ 7]
 [ 8]
 [ 9]
 [10]]
>>> a.shape = (5,-1) # note the -1 trick described above
16
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>>> print a
[[ 1  2]
 [ 3  4]
 [ 5  6]
 [ 7  8]
 [ 9 10]]

As in the rest of Python, violating rules (such as the one about which shapes are allowed) results in exceptions:

>>> a.shape = (6,-1)
Traceback (innermost last):
  File "<stdin>", line 1, in ?
ValueError: total size of new array must be unchanged

For Advanced Users

Sections denoted “For Advanced Users” will be used to indicate aspects of the functions 
which may not be needed for a first introduction at NumPy, but which should be mentioned 
for the sake of completeness.

The default printing routine provided by the Numeric module prints arrays as follows:
1 The last axis is always printed left to right
2 The next-to-last axis is printed top to bottom

The remaining axes are printed top to bottom with increasing numbers of separators.

This explains why rank-1 arrays are printed from left to right, rank-2 arrays have the first di-
mension going down the screen and the second dimension going from left to right, etc. 

If you want to change the shape of an array so that it has more elements than it started with (i.e. grow it), then
you have many options: One solution is to use the concat() method discussed later. An alternative is to use
the array() creator function with existing arrays as arguments: 

>>> print a
[0 1 2 3 4 5 6 6 7]
>>> b = array([a,a]) 
>>> print b
[[0 1 2 3 4 5 6 7]
 [0 1 2 3 4 5 6 7]] 
>>> print b.shape
(2, 8) 

resize

A final possibility is the resize()function, which takes a “base” array as its first argument and the desired
shape as the second argument. Unlike reshape(), the shape argument to resize() can correspond to a
smaller or larger shape than the input array.  Smaller shapes will result in arrays with the data at the “beginning”
of the input array, and larger shapes result in arrays with data containing as many replications of the input array
as are needed to fill the shape. For example, starting with a simple array

>>> base = array([0,1]) 
one can quickly build a large array with replicated data: 

>>> big = resize(base, (9,9)) 
>>> print big
[[0 1 0 1 0 1 0 1 0]
 [1 0 1 0 1 0 1 0 1]
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 [0 1 0 1 0 1 0 1 0]
 [1 0 1 0 1 0 1 0 1]
 [0 1 0 1 0 1 0 1 0]
 [1 0 1 0 1 0 1 0 1]
 [0 1 0 1 0 1 0 1 0]
 [1 0 1 0 1 0 1 0 1]
 [0 1 0 1 0 1 0 1 0]]

and if you imported the view function from the NumTut package, you can do:

>>> view(resize(base, (100,100)))
# grey grid of horizontal lines is shown
>>> view(resize(base, (101,101)))
# grey grid of alternating black and white pixels is shown

For Advanced Users

The array constructor takes a mandatory data argument, an optional typecode, and op-
tional savespace argument, and an optional copy argument.  If the data argument is a 
sequence, then array creates a new object of type multiarray, and fills the array with the ele-
ments of the data object. The shape of the array is determined by the size and nesting ar-
rangement of the elements of data.

If data is not a sequence, then the array returned is an array of shape () (the empty tuple), 
of typecode ’O’, containing a single element, which is data.

Creating arrays with values specified `on-the-fly' 

zeros() and ones() 

Often, one needs to manipulate arrays filled with numbers which aren't available beforehand. The Numeric
module provides a few functions which create arrays from scratch: 

zeros() and ones() simply create arrays of a given shape filled with zeros and ones respectively: 

>>> z = zeros((3,3)) 
>>> print z 
[[0 0 0]
 [0 0 0]
 [0 0 0]]
>>> o = ones([2,3]) 
>>> print o
[[1 1 1]
 [1 1 1]]

Note that the first argument is a shape – it needs to be a list or a tuple of integers. Also note that the default type
for the returned arrays is Int, which you can feel free to override using something like: 

>>> o = ones((2,3), Float) 
>>> print o
[[ 1.  1.  1.]
 [ 1.  1.  1.]]

arrayrange() 

The arrayrange() function is similar to the range() function in Python, except that it returns an array as
opposed to a list. 
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>>> r = arrayrange(10) 
>>> print r
[0 1 2 3 4 5 6 7 8 9] 

Combining the arrayrange() with the reshape() function, we can get: 

>>> big = reshape(arrayrange(100),(10,10))
>>> print big
[[ 0  1  2  3  4  5  6  7  8  9]
 [10 11 12 13 14 15 16 17 18 19]
 [20 21 22 23 24 25 26 27 28 29]
 [30 31 32 33 34 35 36 37 38 39]
 [40 41 42 43 44 45 46 47 48 49]
 [50 51 52 53 54 55 56 57 58 59]
 [60 61 62 63 64 65 66 67 68 69]
 [70 71 72 73 74 75 76 77 78 79]
 [80 81 82 83 84 85 86 87 88 89]
 [90 91 92 93 94 95 96 97 98 99]]
>>> view(reshape(arrayrange(10000),(100,100)))
# array of increasing lightness from top down (slowly) and from left to
# right (faster) is shown

arange() is a shorthand for arrayrange().  

One can set the start, stop and step arguments, which allows for more varied ranges: 

>>> print arrayrange(10,-10,-2)
[10  8  6  4  2  0  -2  -4  -6  -8]

An important feature of arrayrange is that it can be used with non-integer starting points and strides:

>>> print arrayrange(5.0)
[ 0. 1. 2. 3. 4.]
>>> print arrayrange(0, 1, .2)
[ 0.   0.2  0.4  0.6  0.8]

If you want to create an array with just one value, repeated over and over, you can use the * operator applied to
lists 

>>> a = array([[3]*5]*5)
>>> print a
[[3 3 3 3 3]
 [3 3 3 3 3]
 [3 3 3 3 3]
 [3 3 3 3 3]
 [3 3 3 3 3]]

but that is relatively slow, since the duplication is done on Python lists. A quicker way would be to start with
0's and add 3: 

>>> a = zeros([5,5]) + 3
>>> print a
[[3 3 3 3 3]
 [3 3 3 3 3]
 [3 3 3 3 3]
 [3 3 3 3 3]
 [3 3 3 3 3]]

The optional typecode argument can force the typecode of the resulting array, which is otherwise the “highest”
of the starting and stopping arguments. The starting argument defaults to 0 if not specified. Note that if a type-
code is specified which is “lower” than that which arrayrange would normally use, the array is the result of a
precision-losing cast (a round-down, as that used in the astype method for arrays.)
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Creating an array from a function: fromfunction()

Finally, one may want to create an array with contents which are the result of a function evaluation. This is done
using the fromfunction() function, which takes two arguments, a shape and a callable object (usually a
function).  For example: 

>>> def dist(x,y):
...   return (x-5)**2+(y-5)**2 # distance from point (5,5) squared
...
>>> m = fromfunction(dist, (10,10))
>>> print m
[[50 41 34 29 26 25 26 29 34 41]
 [41 32 25 20 17 16 17 20 25 32]
 [34 25 18 13 10  9 10 13 18 25]
 [29 20 13  8  5  4  5  8 13 20]
 [26 17 10  5  2  1  2  5 10 17]
 [25 16  9  4  1  0  1  4  9 16]
 [26 17 10  5  2  1  2  5 10 17]
 [29 20 13  8  5  4  5  8 13 20]
 [34 25 18 13 10  9 10 13 18 25]
 [41 32 25 20 17 16 17 20 25 32]]
>>> view(fromfunction(dist, (100,100))
# shows image which is dark in topleft corner, and lighter away from it.
>>> m = fromfunction(lambda i,j,k: 100*(i+1)+10*(j+1)+(k+1), (4,2,3))
>>> print m
[[[111 112 113]
  [121 122 123]]
 [[211 212 213]
  [221 222 223]]
 [[311 312 313]
  [321 322 323]]
 [[411 412 413]
  [421 422 423]]]

By examining the above examples, one can see that fromfunction() creates an array of the shape specified
by its second argument, and with the contents corresponding to the value of the function argument (the first ar-
gument) evaluated at the indices of the array.  Thus the value of m[3,4] in the first example above is the value
of dist when x=3 and y=4.  Similarly for the lambda function in the second example, but with a rank-3 array.

The implementation of fromfunction consists of:

def fromfunction(function, dimensions):
    return apply(function, tuple(indices(dimensions)))

which means that the function function is called with arguments given by the sequence indices(dimensions). As
described in the definition of indices, this consists of arrays of indices which will be of rank one less than that
specified by dimensions. This means that the function argument must accept the same number of arguments as
there are dimensions in dimensions, and that each argument will be an array of the same shape as that specified
by dimensions. Furthermore, the array which is passed as the first argument corresponds to the indices of each
element in the resulting array along the first axis, that which is passed as the second argument corresponds to
the indices of each element in the resulting array along the second axis, etc. A consequence of this is that the
function which is used with fromfunction will work as expected only if it performs a separable computation on
its arguments, and expects its arguments to be indices along each axis. Thus, no logical operation on the argu-
ments can be performed, or any non-shape preserving operation. Thus, the following will not work as expected:

>>> def buggy(test):
...     if test > 4: return 1
...     else: return 0
...
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>>> print fromfunction(buggy,(10,))
1

Here is how to do it properly. We add a print statement to the function for clarity:

>>> def notbuggy(test):
...     print test
...     return where(test>4,1,0)
...
>>> fromfunction(notbuggy,(10,))
[0 1 2 3 4 5 6 7 8 9]
array([0, 0, 0, 0, 0, 1, 1, 1, 1, 1])

We leave it as an excercise for the reader to figure out why the “buggy” example gave the result 1.

identity()

The simplest array constructor is the identity(n) function, which takes a single integer argument and re-
turns a square identity array of that size of integers: 

>>> print identity(5)
[[1 0 0 0 0]
 [0 1 0 0 0]
 [0 0 1 0 0]
 [0 0 0 1 0]
 [0 0 0 0 1]]
>>> view(identity(100))
# shows black square with a single white diagonal

Coercion and Casting

We’ve mentioned the typecodes of arrays, and how to create arrays with the right typecode, but we haven’t cov-
ered what happens when arrays with different typecodes interact.

Automatic Coercions and Binary Operations

The rules followed by NumPy when performing binary operations on arrays mirror those used by Python in
general.  Operations between numeric and non-numeric types are not allowed (e.g. an array of characters can’t
be added to an array of numbers), and operations between mixed number types (e.g. floats and integers, floats
and omplex numbers, or in the case of NumPy, operations between any two arrays with different numeric type-
codes) first perform a coercion of the ’smaller’ numeric type to the type of the ‘larger’ numeric type.  Finally,
when scalars and arrays are operated on together, the scalar is converted to a rank-0 array first. Thus, adding a
“small” integer to a “large” floating point array is equivalent to first casting the integer “up” to the typecode of
the array:

>>> arange(0, 1.0, .1) + 12
array([ 12. ,  12.1,  12.2,  12.3,  12.4,  12.5,  12.6,  12.7,  12.8,  
12.9])

The automatic coercions are described in Figure 1. Avoiding upcasting is discussed in “Saving space” on
page 23.
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Figure 1 Up-casts are indicated with arrows.  Down-casts are allowed by the 
astype() method, but may result in loss of information.

Deliberate up-casting: The asarray function

One more array constructor is the asarray() function. It is used if you want to have an array of a specific
typecode and you don't know what typecode array you have (for example, in a generic function which can op-
erate on all kinds of arrays, but needs them to be converted to complex arrays). If the array it gets as an argu-
ment is of the right typecode, it will get sent back unchanged. If the array is not of the right typecode, each
element of the new array will be the result of the coercion to the new type of the old elements.  asarray()
will refuse to operate if there might be loss of information -- in other words, asarray() only casts ’up’. 

asarray is also used when you have a function that operates on arrays, but you want to allow people to call
it with an arbitrary python sequence object. This gives your function a behavior similar to that of most of the
builtin functions that operate on arrays. 

The typecode value table

The typecodes identifiers (Float0, etc.) have as values single-character strings.  The mapping between type-
code and character strings is machine dependent.  An example of the correspondences between typecode char-
acters and the typecode identifiers for 32-bit architectures are shown in Table 3-X.

Table 1: Typecode character/identifier table on a Pentium computer

Character
# of 

bytes
# of 
bits

Identifiers

D 16 128 Complex, Complex64

F 8 64 Complex0, Complex16, Complex32, Complex8

d 8 64 Float, Float64

f 4 32 Float0, Float16, Float32, Float8

PyObject

Complex32

Complex64

Complex128

Float32

Float64

Float128

Float16

Float8

Char

Int32

Int64

Int128

Int16

Int8UnsignedInt8

Same-type coercion

Different-type coercion
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Consequences of silent upcasting

When dealing with very large arrays of floats and if precision is not important (or arrays of small integers), then
it may be worthwhile to cast the arrays to “small” typecodes, such as Int8, Int16 or Float32.  As the stan-
dard Python integers and floats correspond to the typecodes Int32 and Float64, using them in apparently
“innocent” ways will result in up-casting, which may null the benefit of the use of small typecode arrays.  For
example:

>>> mylargearray.typecode()
’f’ #  a.k.a. Float32 on a Pentium
>>> mylargearray.itemsize()
4
>>> mylargearray = mylargearray + 1# 1 is an Int64 on a Pentium
>>> mylargearray.typecode() # see Fig. 1 for explanation.
’d’
>>> mylargearray.itemsize()
8

Note that the sizes returned by the itemsize() method are expressed in bytes.

Saving space

Numeric arrays can be created using an optional, keyworded argument to the constructor, savespace. If
savespace is set to 1, Numeric will attempt to avoid the silent upcasting behavior. The status of an array can be
queried with the spacesaver() method. If x.spacesaver() is true, x has its space-saving flag set. The flag can be
set with the savespace method: x.savespace(1) to set it, x.savespace(0) to clear it.

Deliberate casts (potentially down): the astype method

You may also force NumPy to cast any number array to another number array.  For example, to take an array
of any numeric type (IntX or FloatX or ComplexX or UnsignedInt8) and convert it to a 64-bit float, one can do:

>>> floatarray = otherarray.astype(Float64)
The typecode can be any of the number typecodes, “larger” or “smaller".  If it is larger, this is a cast-up, as if
asarray() had been used.  If it is smaller, the standard casting rules of the underlying language (C) are used,
which means that truncation or loss of precision can occur:

>>> print x
[ 0.   0.4  0.8  1.2  1.6]
>>> x.astype(Int)
array([0, 0, 0, 1, 1])

If the typecode used with astype() is the original array’s typecode, then a copy of the original array is re-
turned.

l 4 32 Int

1 1 8 Int0, Int8

s 2 16 Int16

i 4 32 Int32

Table 1: Typecode character/identifier table on a Pentium computer

Character
# of 

bytes
# of 
bits

Identifiers
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Operating on Arrays

Simple operations 

If you have a keen eye, you have noticed that some of the previous examples did something new: they added a
number to an array. Indeed, most Python operations applicable to numbers are directly applicable to arrays: 

>>> print a
[1 2 3]
>>> print a * 3
[3 6 9]
>>> print a + 3
[4 5 6]

Note that the mathematical operators behave differently depending on the types of their operands. When one of
the operands is an array and the other is a number, the number is added to all the elements of the array and the
resulting array is returned. This is called broadcasting. This also occurs for unary mathematical operations such
as sin and the negative sign

>>> print sin(a)
[ 0.84147098  0.90929743  0.14112001]
>>> print -a
[-1 -2 -3]

When both elements are arrays with the same shape, then a new array is created, where each element is the sum
of the corresponding elements in the original arrays: 

>>> print a + a
[2 4 6]

If the operands of operations such as addition are arrays which have the same rank but different non-integer di-
mensions, then an exception is generated: 

>>> print a
[1 2 3]
>>> b = array([4,5,6,7]) # note this has four elements
>>> print a + b
Traceback (innermost last):
  File ``<stdin>``, line 1, in ?
ArrayError: frames are not aligned

This is because there is no reasonable way for NumPy to interpret addition of a (3,) shaped array and a (4,)
shaped array.

Note what happens  when adding arrays with different rank 

>>> print a
[1 2 3]
>>> print b
[[ 4  8 12]
 [ 5  9 13]
 [ 6 10 14]
 [ 7 11 15]]
>>> print a + b
[[ 5 10 15]
 [ 6 11 16]
 [ 7 12 17]
 [ 8 13 18]]

This is another form of broadcasting. To understand this, one needs to look carefully at the shapes of a and b: 

>>> a.shape
(3,)
>>> b.shape
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(4,3)
Because array a’s last dimension had length 3 and array b’s last dimension also had length 3, those two dimen-
sions were “matched” and a new dimension was created and automatically “assumed” for array a.  The data al-
ready in a was “replicated” as many times as needed (4, in this case) to make the two shapes of the operand
arrays conform.  This replication (broadcasting) occurs when arrays are operands to binary operations and their
shapes differ and when the following conditions are true:

• starting from the last axis, the axis lengths (dimensions) of the operands are compared

• if both arrays have an axis length greater than 1, an exception is raised

• if one array has an axis length greater than 1, then the other array’s axis is “stretched” to match the
length of the first axis -- if the other array’s axis is not present (i.e., if the other array has smaller
rank), then a new axis of the same length is created.

This algorithm is complex, but intuitive in practice.  For more details, consult the Numeric Reference.

In-place operations

Beginning with Python 2.0, Python supports the in-place operators +=, -=, *=, and /=. Numeric supports these
operations but you need to be careful. The right-hand side should be of the same typecode. Some violation of
this is possible as the following example shows, but in general contortions may be necessary for using the small-
er “kinds” of typecodes.

>>> x
array([ 5.,  6.,  7.])
>>> x+= 3.
>>> id(x)
8253904
>>> y=x.astype(Float32)
>>> y+=2
Traceback (most recent call last):
  File "<stdin>", line 1, in ?
TypeError: return array has incorrect type
>>> y+=array(2.).astype(Float32)
>>> y
array([ 10.,  11.,  12.],'f')

This area clearly needs improvement.

Getting and Setting array values

Just like other Python sequences, array contents are manipulated with the [] notation. For rank-1 arrays, there
are no differences between list and array notations:

>>> a = arrayrange(10)
>>> print a[0] # get first element
0
>>> print a[1:5] # get second through fifth element
[1 2 3 4]
>>> print a[-1] # get last element
9
>>> print a[:-1] # get all but last element
[0 1 2 3 4 5 6 7 8]

The first difference with lists comes with multidimensional indexing.  If an array is multidimensional (of rank
> 1), then specifying a single integer index will return an array of dimension one less than the original array. 

>>> a = arrayrange(9)
>>> a.shape = (3,3)
>>> print a
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[[0 1 2]
 [3 4 5]
 [6 7 8]]
>>> print a[0] # get first row, not first element!
[0 1 2]
>>> print a[1] # get second row
[3 4 5]

To get to individual elements in a rank-2 array, one specifies both indices separated by commas:

>>> print a[0,0] # get elt at first row, first column
0
>>> print a[0,1] # get elt at first row, second column
1
>>> print a[1,0] # get elt at second row, first column
3
>>> print a[2,-1] # get elt at third row, last column
8

Of course, the [] notation can be used to set values as well: 

>>> a[0,0] = 123
>>> print a
[[123   1   2]
 [  3   4   5]
 [  6   7   8]]

Note that when referring to rows, the right hand side of the equal sign needs to be a sequence which “fits” in the
referred array subset (in the code sample below, a 3-element row):

>>> a[1] = [10,11,12]
>>> print a
[[123   1   2]
 [ 10  11  12]
 [  6   7   8]]

Slicing Arrays 

The standard rules of Python slicing apply to arrays, on a per-dimension basis. Assuming a 3x3 array: 

>>> a = reshape(arrayrange(9),(3,3))
>>> print a
[[0 1 2]
 [3 4 5]
 [6 7 8]]

The plain [:] operator slices from beginning to end:

>>> print a[:,:]
[[0 1 2]
 [3 4 5]
 [6 7 8]]

In other words, [:] with no arguments is the same as [:] for lists – it can be read “all indices along this axis”. So,
to get the second row along the second dimension: 

>>> print a[:,1]
[1 4 7]

Note that what was a “column” vector is now a “row” vector -- any “integer slice” (as in the 1 in the example
above) results in a returned array with rank one less than the input array.

If one does not specify as many slices as there are dimensions in an array, then the remaining slices are assumed
to be “all”. If A is a rank-3 array, then
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A[1] == A[1,:] == A[1,:,:]
There is one addition to the slice notation for arrays which does not exist for lists, and that is the optional third
argument, meaning the ``step size'' also called stride or increment.  Its default value is 1, meaning return every
element in the specified range.  Alternate values allow one to skip some of the elements in the slice: 

>>> a = arange(12)
>>> print a
[ 0  1  2  3  4  5  6  7  8  9 10 11]
>>> print a[::2] # return every *other* element
[ 0  2  4  6  8 10]

Negative strides are allowed as long as the starting index is greater than the stopping index:

>>> a = reshape(arrayrange(9),(3,3))
>>> print a
[[0 1 2]
 [3 4 5]
 [6 7 8]]
>>> print a[:, 0]
[0 3 6]
>>> print a[0:3, 0]
[0 3 6]
>>> print a[2::-1, 0]
[6 3 0]

If a negative stride is specified and the starting or stopping indices are omitted, they default to “end of axis” and
“beginning of axis” respectively.  Thus, the following two statements are equivalent for the array given:

>>> print a[2::-1, 0]
[6 3 0]
>>> print a[::-1, 0]
[6 3 0]
>>> print a[::-1] # this reverses only the first axis
[[6 7 8]
 [3 4 5]
 [0 1 2]]
>>> print a[::-1,::-1] # this reverses both axes  
[[8 7 6]
 [5 4 3]
 [2 1 0]]

One final way of slicing arrays is with the keyword ... This keyword is somewhat complicated. It stands for
``however many `:' I need depending on the rank of the object I'm indexing, so that the indices I *do* specify
are at the end of the index list as opposed to the usual beginning.`` 

So, if one has a rank-3 array A, then A[...,0] is the same thing as A[:,:,0] but if B is rank-4, then
B[...,0] is the same thing as: B[:,:,:,0]. Only one ... is expanded in an index expression, so if one
has a rank-5 array C, then:  C[...,0,...] is the same thing as  C[:,:,:,0,:].
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6. Ufuncs 

What are Ufuncs?

The operations on arrays that were mentioned in the previous section (element-wise addition, multiplication,
etc.) all share some features -- they all follow similar rules for broadcasting, coercion and “element-wise oper-
ation".  Just like standard addition is available in Python through the add function in the operator module, array
operations are available through callable objects as well.  Thus, the following objects are available in the Nu-
meric module:

All of these ufuncs can be used as functions.  For example, to use add, which is a binary ufunc (i.e. it takes two
arguments), one can do either of:

>>> a = arange(10)
>>> print add(a,a)
[ 0  2  4  6  8 10 12 14 16 18]
>>> print a + a
[ 0  2  4  6  8 10 12 14 16 18]

In other words, the + operator on arrays performs exactly the same thing as the add ufunc when operated on
arrays.  For a unary ufunc such as sin, one can do, e.g.:

>>> a = arange(10)
>>> print sin(a)
[ 0.          0.84147098  0.90929743  0.14112001 -0.7568025  -0.95892427
      -0.2794155   0.6569866   0.98935825  0.41211849]

Table 2: Universal Functions, or ufuncs. The operators which invoke them when 
applied to arrays are indicated in parentheses. The entries in slanted 
typeface refer to unary ufuncs, while the others refer to binary ufuncs.

add (+) subtract (-) multiply (*) divide (/), 
divide_safe

remainder (%) power (**) arccos arccosh

arcsin arcsinh arctan arctanh

cos cosh tan tanh

log10 sin sinh sqrt

absolute fabs floor ceil

fmod exp log conjugate

maximum minimum

greater (>) equal (==) not_equal  (!=)

greater_equal (>=) less (<) less_equal (<=)

logical_or (or) logical_xor logical_not (not) logical_and (and)

bitwise_or (|) bitwise_xor 
(^)

bitwise_not (~) bitwise_and (&)
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Unary ufuncs return arrays with the same shape as their arguments, but with the contents corresponding to the
corresponding mathematical function applied to each element (sin(0)=0, sin(1)=0.84147098, etc.).  

There are three additional features of ufuncs which make them different from standard Python functions.  They
can operate on any Python sequence in addition to arrays; they can take an “output” argument; they have at-
tributes which are themselves callable with arrays and sequences. Each of these will be described in turn.

Ufuncs can operate on any Python sequence

Ufuncs have so far been described as callable objects which take either one or two arrays as arguments (depend-
ing on whether they are unary or binary).  In fact, any Python sequence which can be the input to the array()
constructor can be used.  The return value from ufuncs is always an array.  Thus:

>>> add([1,2,3,4], (1,2,3,4))
array([2, 4, 6, 8])

Ufuncs can take output arguments

In many computations with large sets of numbers, arrays are often used only once.  For example, a computation
on a large set of numbers could involve the following step

    dataset = dataset * 1.20
This operation as written needs to create a temporary array to store the results of the computation, and then
eventually free the memory used by the original dataset array (provided there are no other references to the data
it contains).  It is more efficient, both in terms of memory and computation time, to do an “in-place” operation.
This can be done by specifying an existing array as the place to store the result of the ufunc.  In this example,
one can write:

    multiply(dataset, 1.20, dataset)
This is not a step to take lightly, however.  For example, the “big and slow” version (dataset = dataset
* 1.20) and the “small and fast” version above will yield different results in two cases:  

• If the typecode of the target array is not that which would normally be computed, the operation will
fail and raise a TypeError exception.

• If the target array corresponds to a different “view” on the same data as either of the source arrays,
inconsistencies will result.  For example, 

          >>> a = arange(5, typecode=Float64)
          >>> print a[::-1] * 1.2
          [ 4.8  3.6  2.4  1.2  0. ]
          >>> multiply(a[::-1], 1.2, a)
          array([ 4.8 ,  3.6 ,  2.4 ,  4.32,  5.76])
          >>> print a
          [ 4.8   3.6   2.4   4.32  5.76]

This is because the ufunc does not know which arrays share which data, and in this case the over-
writing of the data contents follows a different path through the shared data space of the two arrays,
thus resulting in strangely distorted data.

Ufuncs have special methods

The reduce ufunc method

If you don't know about the reduce command in Python, review section 5.1.1 of the Python Tutorial (http://
www.python.org/doc/tut/functional.html). Briefly, reduce is most often used with two arguments, a callable
object (such as a function), and a sequence.  It calls the callable object with the first two elements of the se-
quence, then with the result of that operation and the third element, and so on, returning at the end the succes-
sive “reduction” of the specified callable object over the sequence elements.  Similarly, the reduce method of
ufuncs is called with a sequence as an argument, and performs the reduction of that ufunc on the sequence. As
an example, adding all of the elements in a rank-1 array can be done with:
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>>> a = array([1,2,3,4])
>>> print add.reduce(a)
10 

When applied to arrays which are of rank greater than one, the reduction proceeds by default along the first axis:

>>> b = array([[1,2,3,4],[6,7,8,9]])
>>> print b
[[1 2 3 4]
 [6 7 8 9]]
>>> print add.reduce(b)
[ 7  9 11 13]

A different axis of reduction can be specified with a second integer argument:

>>> print b
[[1 2 3 4]
 [6 7 8 9]]
>>> print add.reduce(b, 1)
[10 30] 

The accumulate ufunc method

The accumulate ufunc method is simular to reduce, except that it returns an array containing the interme-
diate results of the reduction: 

>>> a = arange(10)
>>> print a
[0 1 2 3 4 5 6 7 8 9]
>>> print add.accumulate(a)
[ 0  1  3  6 10 15 21 28 36 45] # 0, 0+1, 0+1+2, 0+1+2+3, ... 0+...+9
>>> print add.reduce(a)
45 # same as add.accumulate(...)[-1]

The outer ufunc method

The third ufunc method is outer, which takes two arrays as arguments and returns the “outer ufunc” of the two
arguments. Thus the outer method of the multiply ufunc, results in the outer product. The outer method is
only supported for binary methods. 

>>> print a
[0 1 2 3 4]
>>> print b
[0 1 2 3]
>>> print add.outer(a,b)
[[0 1 2 3]
 [1 2 3 4]
 [2 3 4 5]
 [3 4 5 6]
 [4 5 6 7]]
>>> print multiply.outer(b,a)
[[ 0  0  0  0  0]
 [ 0  1  2  3  4]
 [ 0  2  4  6  8]
 [ 0  3  6  9 12]]
>>> print power.outer(a,b)
[[ 1  0  0  0]
 [ 1  1  1  1]
 [ 1  2  4  8]
 [ 1  3  9 27]
 [ 1  4 16 64]]
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The reduceat ufunc method

The final ufunc method is the reduceat method, which I’d love to explain it, but I don’t understand it (XXX).

Ufuncs always return new arrays

Except when the ’output’ argument are used as described above, ufuncs always return new arrays which do not
share any data with the input array.

Which are the Ufuncs?

Table 1 lists all the ufuncs. We will first discuss the mathematical ufuncs, which perform operations very sim-
ilar to the functions in the math and cmath modules, albeit elementwise, on arrays.  These come in two forms,
unary and binary:

Unary Mathematical Ufuncs (take only one argument) 

The following ufuncs apply the predictable functions on their single array arguments, one element at a time:
arccos, arccosh,  arcsin,  arcsinh,  arctan,  arctanh,  cos,  cosh,  exp,  log,  log10,
sin,  sinh,  sqrt,  tan,  tanh.

As an example:

>>> print x
[0 1 2 3 4]
>>> print cos(x)
[ 1.          0.54030231 -0.41614684 -0.9899925  -0.65364362]
>>> print arccos(cos(x))
[ 0.          1.          2.          3.          2.28318531]
# not a bug, but wraparound: 2*pi%4 is 2.28318531

The conjugate ufunc takes an array of complex numbers and returns the array with entries which are the
complex conjugates of the entries in the input array.  If it is called with real numbers, a copy of the array is re-
turned unchanged.

Binary Mathematical Ufuncs

These ufuncs take two arrays as arguments, and perform the specified mathematical operation on them, one pair
of elements at a time: add, subtract, multiply, divide, remainder, power. 

Logical Ufuncs

The ``logical'' ufuncs also perform their operations on arrays in elementwise fashion, just like the ``mathemat-
ical'' ones.

Two are special (maximum and miminum) in that they return arrays with entries taken from their input arrays:

>>> print x
[0 1 2 3 4]
>>> print y
[ 2.   2.5  3.   3.5  4. ]
>>> print maximum(x, y)
[ 2.   2.5  3.   3.5  4. ]
>>> print minimum(x, y)
[ 0.  1.  2.  3.  4.]

The others all return arrays of 0’s or 1’s: logical_and, logical_or, logical_xor, logical_not,
bitwise_and, bitwise_or, bitwise_xor, bitwise_not.
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These are fairly self-explanatory, especially with the associated symbols from the standard Python version of
the same operations in Table 1 above.  The logical_* ufuncs perform their operations (and, or, etc.) using
the truth value of the elements in the array (equality to 0 for numbers and the standard truth test for PyObject
arrays).  The bitwise_* ufuncs, on the other hand, can be used only with integer arrays (of any word size),
and will return integer arrays of the larger bit size of the two input arrays:

>>> x
array([7, 7, 0],'1')
>>> y
array([4, 5, 6])
>>> bitwise_and(x,y)
array([4, 5, 0],'i')

We've already discussed how to find out about the contents of arrays based on the indices in the arrays – that's
what the various slice mechanisms are for. Often, especially when dealing with the result of computations or
data analysis, one needs to ``pick out'' parts of matrices based on the content of those matrices. For example, it
might be useful to find out which elements of an array are negative, and which are positive. The comparison
ufuncs are designed for just this type of operation. Assume an array with various positive and negative numbers
in it (for the sake of the example we'll generate it from scratch): 

>>> print a
[[ 0  1  2  3  4]
 [ 5  6  7  8  9]
 [10 11 12 13 14]
 [15 16 17 18 19]
 [20 21 22 23 24]]
>>> b = sin(a)
>>> print b
[[ 0.          0.84147098  0.90929743  0.14112001 -0.7568025 ]
 [-0.95892427 -0.2794155   0.6569866   0.98935825  0.41211849]
 [-0.54402111 -0.99999021 -0.53657292  0.42016704  0.99060736]
 [ 0.65028784 -0.28790332 -0.96139749 -0.75098725  0.14987721]
 [ 0.91294525  0.83665564 -0.00885131 -0.8462204  -0.90557836]]
>>> view(greater(greeceBW, .3))
# shows a binary image with white where the pixel value was greater than 
.3

Comparisons

The comparison functions equal, not_equal, greater, greater_equal, less, and
less_equal are invoked by the operators ==, !=, >, >=, <, and <= respectively, but they can also be called
directly as functions. Continuing with the preceding example, 

>>> print less_equal(b, 0)
[[1 0 0 0 1]
 [1 1 0 0 0]
 [1 1 1 0 0]
 [0 1 1 1 0]
 [0 0 1 1 1]]

This last example has 1’s where the corresponding elements are less than or equal to 0, and 0’s everywhere else.

The operators and the comparison functions are not exactly equivalent

To compare an array a with an object b, if b can be converted to an array, the result of the comparison is re-
turned. Otherwise, zero is returned. In particular one can compare arrays of type object. This means that com-
paring a list and comparing an array can return quite different answers. Since the functional forms such as
equal will try to make arrays from their arguments, using equal can result in a different result than using ==.

>>> from Numeric import *
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>>> x=[1,None,2]
>>> print x == None
0
>>> print equal(x,None)
[0 1 0]

Ufunc shorthands

Numeric defines a few functions which correspond to often-used uses of ufuncs: for example, add.re-
duce() is synonymous with the sum() utility function: 

>>> a = arange(5) # [0 1 2 3 4]
>>> print sum(a) # 0 + 1 + 2 + 3 + 4
10

Similarly, cumsum is equivalent to add.accumulate (for ``cumulative sum``), product to multi-
ply.reduce, and cumproduct to multiply.accumulate.

Additional ``utility'' functions which are often useful are alltrue and sometrue, which are defined as
logical_and.reduce and logical_or.reduce respectively:

>>> a = array([0,1,2,3,4])
>>> print greater(a,0)
[0 1 1 1 1]
>>> alltrue(greater(a,0))
0
>>> sometrue(greater(a,0))
1
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7. Pseudo Indices

Tbis chapter discusses pseudo-indices, which allow arrays to have their shapes modified
by adding axes, sometimes only for the duration of the evaluation of a Python expression.

Consider multiplication of a rank-1 array by a scalar: 

>>> a = array([1,2,3])
>>> a * 2
[2 4 6]

This should be trivial to you by now. We've just multiplied a rank-1 array by a scalar (which is converted to a
rank-0 array). In other words, the rank-0 array was broadcast to the next rank. This works for adding some two
rank-1 arrays as well: 

>>> print a
[1 2 3]
>>> a + array([4])
[5 6 7]

but it won't work if either of the two rank-1 arrays have non-matching dimensions which aren't 1 – put another
way, broadcast only works for dimensions which are either missing (e.g. a lower-rank array) or for dimensions
of 1. 

With this in mind, consider a classic task, matrix multiplication. Suppose we want to multiply the row vector
[10,20] by the column vector [1,2,3]. 

>>> a = array([10,20])
>>> b = array([1,2,3])
>>> a * b
Traceback (innermost last):
  File "<stdin>", line 1, in ?
ValueError: frames are not aligned example 

This makes sense – we're trying to multiply a rank-1 array of shape (2,) with a rank-1 array of shape (3,). This
violates the laws of broadcast. What we really want to do is make the second vector a vector of shape (3,1), so
that the first vector can be broadcast across the second axis of the second vector. One way to do this is to use
the reshape function: 

>>> a.shape
(2,)
>>> b.shape
(3,)
>>> b2 = reshape(b, (3,1))
>>> print b2
[[1]
 [2]
 [3]]
>>> b2.shape
(3, 1)
>>> print a * b2
[[10 20]
 [20 40]
 [30 60]]
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This is such a common operation that a special feature was added (it turns out to be useful in many other places
as well) – the NewAxis ``pseudo-index'', originally developed in the Yorick language.  NewAxis is an index,
just like integers, so it is used inside of the slice brackets []. It can be thought of as meaning ``add a new axis
here,'' in much the same ways as adding a 1 to an array's shape adds an axis. Again, examples help clarify the
situation: 

>>> print b
[1 2 3]
>>> b.shape
(3,)
>>> c = b[:, NewAxis]
>>> print c
[[1]
 [2]
 [3]]
>>> c.shape
(3,1) 

Why use such a pseudo-index over the reshape function or shape assignments? Often one doesn't really want a
new array with a new axis, one just wants it for an intermediate computation. Witness the array multiplication
mentioned above, without and with pseudo-indices: 

>>> without = a * reshape(b, (3,1)) 
>>> with = a * b[:,NewAxis]

The second is much more readable (once you understand how NewAxis works), and it's much closer to the in-
tended meaning. Also, it's independent of the dimensions of the array b You might counter that using something
like reshape(b, (-1,1)) is also dimension-independent, but 1) would you argue that it's as readable? 2)
how would you deal with rank-3 or rank-N arrays? The NewAxis-based idiom also works nicely with higher
rank arrays, and with the ... ``rubber index'' mentioned earlier. Adding an axis before the last axis in an array
can be done simply with: 

>>> a[...,NewAxis,:]
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8. Array Functions 

Most of the useful manipulations on arrays are done with functions. This might be surprising given Python's ob-
ject-oriented framework, and that many of these functions could have been implemented using methods in-
stead. Choosing functions means that the same procedures can be applied to arbitrary python sequences, not just
to  a r r a y s .  F o r  e x a mp l e ,  w h i l e  transpose([[1,2],[3,4]])  w o r k s  j u s t  f i n e ,
[[1,2],[3,4]].transpose() can’t work. This approach also allows uniformity in interface between
functions defined in the Numeric Python system, whether implemented in C or in Python, and functions defined
in extension modules. The use of array methods is limited to functionality which depends critically on the im-
plementation details of array objects.  Array methods are discussed in the next chapter. 

We've already covered two functions which operate on arrays,  reshape and resize.

take(a, indices, axis=0) 

take is in some ways like the slice operations. It selects the elements of the array it gets as first argument based
on the indices it gets as a second argument. Unlike slicing, however, the array returned by take has the same
rank as the input array. This is again much easier to understand with an illustration: 

>>> print a
[[ 0  1  2  3  4]
 [ 5  6  7  8  9]
 [10 11 12 13 14]
 [15 16 17 18 19]]
>>> print take(a, (0,)) # first row 
[ [0 1 2 3 4]]
>>> print take(a, (0,1)) # first and second row
[[0 1 2 3 4]
 [5 6 7 8 9]]
>>> print take(a, (0,-1)) # first and last row
[[ 0  1  2  3  4]
 [15 16 17 18 19]]

The optional third argument specifies the axis along which the selection occurs, and the default value (as in the
examples above) is 0, the first axis. If you want another axis, then you can specify it: 

>>> print take(a, (0,), 1) # first column
[[ 0]
 [ 5]
 [10]
 [15]]
>>> print take(a, (0,1), 1) # first and second column
[[ 0  1]
 [ 5  6]
 [10 11]
 [15 16]]
>>> print take(a, (0,-1), 1) # first and last column
[[ 0  4]
 [ 5  9]
 [10 14]
 [15 19]]
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This is considered to be a ``structural'' operation, because its result does not depend on the content of the arrays
or the result of a computation on those contents but uniquely on the structure of the array. Like all such struc-
tural operations, the default axis is 0 (the first rank). I mention it here because later in this tutorial, we will see
functions which have a default axis of -1. 

Take is often used to create multidimensional arrays with the indices from a rank-1 array.  As in the earlier ex-
amples, the shape of the array returned by take() is a combination of the shape of its first argument and the
shape of the array that elements are “taken” from -- when that array is rank-1, the shape of the returned array
has the same shape as the index sequence. This, as with many other facets of Numeric, is best understood by ex-
periment.

>>> x = arange(10) * 100
>>> print x
[  0 100 200 300 400 500 600 700 800 900]
>>> print take(x, [[2,4],[1,2]])
[[200 400]
 [100 200]]

A typical example of using take() is to replace the grey values in an image according to a “translation table".
For example, let’s consider a brightening of a greyscale image.  The view() function defined in the NumTut
package automatically scales the input arrays to use the entire range of grey values, except if the input arrays
are of typecode ’b’ unsigned bytes -- thus to test this brightening function, we’ll first start by converting the
greyscale floating point array to a greyscale byte array:

>>> BW = (greeceBW*256).astype('b')
>>> view(BW) # shows black and white picture

We then create a table mapping the integers 0-255 to integers 0-255 using a “compressive nonlinearity":

>>> table = (255- arange(256)**2 / 256).astype('b')
>>> view(table) # shows the conversion curve

To do the “taking” into an array of the right kind, we first create a blank image array with the same shape and
typecode as the original array:

>>> BW2 = zeros(BW.shape, BW.typecode())
and then perform the take() operation

>>> BW2.flat[:] = take(table, BW.flat)
>>> view(BW2)

put (a, indices, values)

put is the opposite of take. The values of the array a at the locations specified in indices are set to the
corresponding value of values. The array a must be a contiguous array. The argument indices can be any
integer sequence object with values suitable for indexing into the flat form of a. The argument values must
be any sequence of values that can be converted to the typecode of a.

>>> x = arange(6)
>>> put(x, [2,4], [20,40])
>>> print x
[ 0  1 20  3 40  5]

Note that the target array a is not required to be one-dimensional. Since a is contiguous and stored in row-major
order, the array indices can be treated as indexing a’s elements in storage order. 

The routine put is thus equivalent to the following (although the loop is in C for speed):

ind = array(indices, copy=0)
v = array(values, copy=0).astype(a.typecode())
for i in len(ind): a.flat[i] = v[i]
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putmask (a, mask, values)

putmask sets those elements of a for which mask is true to the corresponding value in values. The array a
must be contiguous. The argument mask must be an integer sequence of the same size (but not necessarily the
same shape) as a. The argument values will be repeated as necessary; in particular it can be a scalar. The
array values must be convertible to the type of a.

>>> x=arange(5) 
>>> putmask(x, [1,0,1,0,1], [10,20,30,40,50])
>>> print x
[10  1 30  3 50]
>>> putmask(x, [1,0,1,0,1], [-1,-2])
>>> print x
[-1  1 -1  3 -1]
Note how in the last example, the third argument was treated as if it was [-1, -2, -1, -2, -1].

transpose(a, axes=None) 

transpose takes an array and returns a new array which corresponds to a with the order of axes specified by
the second argument. The default corresponds to flipping the order of all the axes (it is equivalent to
a.shape[::-1] if a is the input array). 

>>> print a
[[ 0  1  2  3  4]
 [ 5  6  7  8  9]
 [10 11 12 13 14]
 [15 16 17 18 19]]
>>> print transpose(a)
[[ 0  5 10 15]
 [ 1  6 11 16]
 [ 2  7 12 17]
 [ 3  8 13 18]
 [ 4  9 14 19]]
>>> greece.shape # it’s a 355x242 RGB picture
(355, 242, 3)
>>> view(greece)
# picture of greek street is shown
>>> view(transpose(greece, (1,0,2)))# swap x and y, not color axis!
# picture of greek street is shown sideways

repeat(a, repeats, axis=0) 

repeat takes an array and returns an array with each element in the input array repeated as often as indicated
by the corresponding elements in the second array. It operates along the specified axis.  So, to stretch an array
evenly, one needs the repeats array to contain as many instances of the integer scaling factor as the size of the
specified axis:

>>> view(repeat(greece, 2*ones(greece.shape[0]))) # double in X
>>> view(repeat(greece, 2*ones(greece.shape[1]), 1)) # double in Y

choose(a, (b0, ..., bn)) 

a is an array of integers between 0 and n. The resulting array will have the same shape as a, with element select-
ed from b0,...,bn as indicating by the value of the corresponding element in a. 

Assume a is an array a that you want to ``clip'' so that no values are greater than 100.0. 

>>> choose(greater(a, 100.0), (a, 100.0))  
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Everywhere that greater(a, 100.0) is false (ie. 0) this will ``choose'' the corresponding value in a. Everywhere
else it will ``choose'' 100.0. 

This works as well with arrays. Try to figure out what the following does: 

>>> ret = choose(greater_than(a,b), (c,d)) 

ravel(a) 

returns the argument array a as a 1d array. It is equivalent to reshape(a, (-1,)) or a.flat. Unlike
a.flat, however, ravel works with non-contiguous arrays.

>>> print x
[[ 0  1  2  3]
 [ 5  6  7  8]
 [10 11 12 13]]
>>> x.iscontiguous()
0
>>> x.flat
Traceback (innermost last):
  File "<stdin>", line 1, in ?
ValueError: flattened indexing only available for contiguous array
>>> ravel(x)
array([ 0,  1,  2,  3,  5,  6,  7,  8, 10, 11, 12, 13])

nonzero(a) 

nonzero() returns an array containing the indices of the elements in a that are nonzero. These indices only make
sense for 1d arrays, so the function refuses to act on anything else. As of 1.0a5 this function does not work for
complex arrays. 

where(condition, x, y) 

where(condition,x,y) returns an array shaped like condition and has elements of x and y where condition is re-
spectively true or false 

compress(condition, a, axis=0) 

returns those elements of a corresponding to those elements of condition that are nonzero. condition must be the
same size as the given axis of a. 

>>> print x
[0 1 2 3]
>>> print greater(x, 2)
[0 0 0 1]
>>> print compress(greater(x, 2), x)
[3]

diagonal(a, k=0, axis1=0, axis2 = 1) 

returns the entries along the k th diagonal of a (k is an offset from the main diagonal). This is designed for 2d
arrays. For larger arrays, it will return the diagonal of each 2d sub-array.

>>> print x
[[ 0  1  2  3  4]
 [ 5  6  7  8  9]
 [10 11 12 13 14]
 [15 16 17 18 19]
 [20 21 22 23 24]]
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>>> print diagonal(x)
[ 0  6 12 18 24]
>>> print diagonal(x, 1)
[ 1  7 13 19]
>>> print diagonal(x, -1)
[ 5 11 17 23]

trace(a, k=0) 

returns the sum of the elements in a along the k th diagonal. 

>>> print x
[[ 0  1  2  3  4]
 [ 5  6  7  8  9]
 [10 11 12 13 14]
 [15 16 17 18 19]
 [20 21 22 23 24]]
>>> print trace(x) # 0 + 6 + 12 + 18 + 24
60
>>> print trace(x, -1) # 5 + 11 + 17 + 23
56
>>> print trace(x, 1) # 1 + 7 + 13 + 19
40

searchsorted(a, values) 

Called with a rank-1 array sorted in ascending order, searchsorted() will return the indices of the posi-
tions in a where the corresponding values would fit. 

>>> print bin_boundaries
[ 0.   0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1. ]
>>> print data
[ 0.3029573   0.79585496  0.82714031  0.77993884  0.55069605  0.76043182
       0.28511823  0.29987358  0.40286206  0.68617903]
>>> print searchsorted(bin_boundaries, data)
[4 8 9 8 6 8 3 3 5 7]

This can be used for example to write a simple histogramming function:

>>> def histogram(a, bins):
... n = searchsorted(sort(a), bins)
... n = concatenate([n, [len(a)]])
... return n[1:]-n[:-1]
...
>>> print histogram([0,0,0,0,0,0,0,.33,.33,.33], arange(0,1.0,.1))
[7 0 0 3 0 0 0 0 0 0]
>>> print histogram(sin(arange(0,10,.2)), arange(-1.2, 1.2, .1))
[0 0 4 2 2 2 0 2 1 2 1 3 1 3 1 3 2 3 2 3 4 9 0 0]

sort(a, axis=-1) 

This function returns an array containing a copy of the data in a, with the same shape as a, but with the order
of the elements along the specified axis sorted. The shape of the returned array is the same as a’s. Thus,
sort(a, 3) will be an array of the same shape as a, where the elements of a have been sorted along the fourth
axis. 

>>> print data
[[5 0 1 9 8]
 [2 5 8 3 2]
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 [8 0 3 7 0]
 [9 6 9 5 0]
 [9 0 9 7 7]]
>>> print sort(data) # Axis -1 by default
[[0 1 5 8 9]
 [2 2 3 5 8]
 [0 0 3 7 8]
 [0 5 6 9 9]
 [0 7 7 9 9]]
>>> print sort(data, 0)
[[2 0 1 3 0]
 [5 0 3 5 0]
 [8 0 8 7 2]
 [9 5 9 7 7]
 [9 6 9 9 8]] 

argsort(a, axis=-1) 

argsort will return the indices of the elements of a needed to produce sort(a). In other words, for a rank-
1 array, take(a, argsort(a)) == sort(a). 

>>> print data
[5 0 1 9 8]
>>> print sort(data)
[0 1 5 8 9]
>>> print argsort(data)
[1 2 0 4 3]
>>> print take(data, argsort(data))
[0 1 5 8 9]

argmax(a, axis=-1), argmin(a, axis=-1) 

The argmax() function returns an array with the arguments of the maximum values of its input array a along
the given axis. The returned array will have one less dimension than a. argmin() is just like argmax(), ex-
cept that it returns the indices of the minima along the given axis. 

>>> print data
[[9 6 1 3 0]
 [0 0 8 9 1]
 [7 4 5 4 0]
 [5 2 7 7 1]
 [9 9 7 9 7]]
>>> print argmax(data)
[0 3 0 2 0]
>>> print argmax(data, 0)
[0 4 1 1 4]
>>> print argmin(data)
[4 0 4 4 2]
>>> print argmin(data, 0)
[1 1 0 0 0]

fromstring(string, typecode) 

Will return the array formed by the binary data given in string of the specified typecode. This is mainly used for
reading binary data to and from files, it can also be used to exchange binary data with other modules that use
python strings as storage (e.g. PIL). Note that this representation is dependent on the byte order. To find out the
byte ordering used, use the byteswapped() method described on page47.
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dot(m1, m2) 

The dot() function returns the dot product of m1 and m2. This is equivalent to matrix multiply for rank-2 ar-
rays (without the transpose). Somebody who does more linear algebra really needs to do this function right
some day! 

matrixmultiply(m1, m2) 

The matrixmultiply(m1, m2) multiplies matrices or matrices and vectors as matrices rather than ele-
mentwise. Compare:

>>> print a
[[0 1 2]
 [3 4 5]]
>>> print b
[1 2 3]
>>> print a*b
[[ 0  2  6]
 [ 3  8 15]]
>>> print matrixmultiply(a,b)
[ 8 26]

clip(m, m_min, m_max) 

The clip function creates an array with the same shape and typecode as m, but where every entry in m that is
less than m_min is replaced by m_min, and every entry greater than m_max is replaced by m_max. Entries
within the range [m_min, m_max] are left unchanged. 

>>> a = arange(9, Float)
>>> clip(a, 1.5, 7.5)
1.5000 1.5000 2.0000 3.0000 4.0000 5.0000 6.0000 7.0000 7.5000 

indices(shape, typecode=None)

The indices function returns an array corresponding to the shape given. The array returned is an array of a new
shape which is based on the specified shape, but has an added dimension of length the number of dimensions
in the specified shape. For example, if the shape specified by the shape argument is (3,4), then the shape of
the array returned will be (2,3,4) since the length of (3,4) is 2. The contents of the returned arrays are such that
the ith subarray (along index 0, the first dimension) contains the indices for that axis of the elements in the array.
An example makes things clearer:

>>> i = indices((4,3))
>>> i.shape
(2, 4, 3)
>>> print i[0]
[[0 0 0]
 [1 1 1]
 [2 2 2]
 [3 3 3]]
>>> print i[1]
[[0 1 2]
 [0 1 2]
 [0 1 2]
 [0 1 2]]

So, i[0] has an array of the specified shape, and each element in that array specifies the index of that position
in the subarray for axis 0. Similarly, each element in the subarray in i[1] contains the index of that position
in the subarray for axis 1. 
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swapaxes(a, axis1, axis2)

Returns a new array which shares the data of a, but which has the two axes specified by axis1 and axis2
swapped. If a is of rank 0 or 1, swapaxes simply returns a new reference to a.

>>> x = arange(10)
>>> x.shape = (5,2,1)
>>> print x
[[[0]
  [1]]
 [[2]
  [3]]
 [[4]
  [5]]
 [[6]
  [7]]
 [[8]
  [9]]]
>>> y = swapaxes(x, 0, 2)
>>> print y.shape
(1, 2, 5)
>>> print y
[ [[0 2 4 6 8]
  [1 3 5 7 9]]]

concatenate((a0, a1, ... , an), axis=0)

Returns a new array containing copies of the data contained in all arrays a0 ... an. The arrays ai will be
concatenated along the specified axis (0 by default). All arrays ai must have the same shape along every axis
except for the one given. To concatenate arrays along a newly created axis, you can use array((a0, ...,
an)) as long as all arrays have the same shape. 

>>> print x
[[ 0  1  2  3]
 [ 5  6  7  8]
 [10 11 12 13]]
>>> print concatenate((x,x))
[[ 0  1  2  3]
 [ 5  6  7  8]
 [10 11 12 13]
 [ 0  1  2  3]
 [ 5  6  7  8]
 [10 11 12 13]]
>>> print concatenate((x,x), 1)
[[ 0  1  2  3  0  1  2  3]
 [ 5  6  7  8  5  6  7  8]
 [10 11 12 13 10 11 12 13]]
>>> print array((x,x))
[[[ 0  1  2  3]
  [ 5  6  7  8]
  [10 11 12 13]]
 [[ 0  1  2  3]
  [ 5  6  7  8]
  [10 11 12 13]]]
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innerproduct(a, b)

innerproduct produces the inner product of arrays a and b. It is equivalent to matrixmultiply(a, transpose(b)).

outerproduct(a,b)

outerproduct(a,b) produces the outer product of vectors a and b, that is result[i, j] = a[i] * b[j]

array_repr()

See section on Textual Representations of arrays.

array_str()

See section on Textual Representations of arrays.

resize(a, new_shape)

The resize function takes an array and a shape, and returns a new array with the specified shape, and filled
with the data in the input array. Unlike the reshape function, the new shape does not have to yield the same
size as the original array. If the new size of is less than that of the input array, the returned array contains the
appropriate data from the “beginning” of the old array. If the new size is greater than that of the input array, the
data in the input array is repeated as many times as needed to fill the new array.

>>> x = arange(10)
>>> y = resize(x, (4,2)) # note that 4*2 < 10
>>> print x
[0 1 2 3 4 5 6 7 8 9]
>>> print y
[[0 1]
 [2 3]
 [4 5]
 [6 7]]
>>> print resize(array((0,1)), (5,5))# note that 5*5 > 2
[[0 1 0 1 0]
 [1 0 1 0 1]
 [0 1 0 1 0]
 [1 0 1 0 1]
 [0 1 0 1 0]]

diagonal(a, offset=0, axis1=0, axis2=1)

The diagonal function takes an array a, and returns an array of rank 1 containing all of the elements of a such
that the difference between their indices along the specified axes is equal to the specified offset. With the default
values, this corresponds to all of the elements of the diagonal of a along the last two axes. 

repeat (a, counts, axis=0)

The repeat function uses repeated copies of a to create a result. The axis argument refers to the axis of x which
will be replicated. The counts argument tells how many copies of each element to make. The length of counts
must be the len(shape(a)[axis]). 

In one dimension this is straightforward:

>>> y
array([0, 1, 2, 3, 4, 5])
>>> repeat(y, (1,2,0,2,2,3))
array([0, 1, 1, 3, 3, 4, 4, 5, 5, 5])
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In more than one dimension it sometimes gets harder to understand. Consider for example this array x whose
shape is (2,3).

>>> x
array([[0, 1, 2],
       [3, 4, 5]])

>>> repeat(x, (2,6))
array([[0, 1, 2],
       [0, 1, 2],
       [3, 4, 5],
       [3, 4, 5],
       [3, 4, 5],
       [3, 4, 5],
       [3, 4, 5],
       [3, 4, 5]])

>>> repeat(x, (6,3), 1)
array([[0, 0, 0, 0, 0, 0, 1, 1, 1],
       [2, 2, 2, 2, 2, 2, 3, 3, 3]])

convolve (a, v, mode=2)

The convolve function returns the linear convolution of two rank 1 arrays. The output is a rank 1 array whose
length depends on the value of mode which is zero by default. Linear convolution can be used to find the re-
sponse of a linear system to an arbitrary input. If the input arrays correspond to the coefficients of a polynomial
and mode=2, the output of linear convolution corresponds to the coefficients of the product of the polynomials. 

The mode parameter requires a bit of explanation. True linear convolution is only defined over infinite sequenc-
es. As both input arrays must represent finite sequences, the convolve operation assumes that the infinite se-
quences represented by the finite inputs are zero outside of their domain of definition. In other words, the
sequences are zero-padded. If mode is 2, then the non-zero part of the full linear convolution is returned, so the
output has length len (a)+len (v)-1. Call this output f. If mode is 0, then any part of f which was affected by the
zero-padding is chopped from the result. In other words, let b be the input with smallest length and let c be the
other input. The output when mode is 0 is the middle len (c)-len (b)+1 elements of f. When mode is 1, the output
is the same size as c and is equal to the middle len (c) elements of f.

cross_correlate (a, v, mode=0)

The cross_correlate function computes the cross_correlation between two rank 1 arrays. The output is a rank 1
array representing the inner product of a with shifted versions of v. This is very similar to convolution. The dif-
ference is that convolution reverses the axis of one of the input sequences but cross_correlation does not. In fact
it is easy to verify that convolve (a, v, mode) = cross_correlate (a, v [::-1], mode) 

where (condition, x, y)

The where function creates an array whose values are those of x at those indices where condition is true, and
those of y otherwise. The shape of the result is the shape of condition. The type of the result is determined by
the types of x and y. Either or both of x and y and be a scalar, which is then used for any element of condition
which is true.

identity(n)

The identity function returns an n by n array where the diagonal elements are 1, and the off-diagonal elements
are 0.

>>> print identity(5)
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[[1 0 0 0 0]
 [0 1 0 0 0]
 [0 0 1 0 0]
 [0 0 0 1 0]
 [0 0 0 0 1]]

sum(a, index=0)

The sum function is a synonym for the reduce method of the add ufunc. It returns the sum of all of the elements
in the sequence given along the specified axis (first axis by default).

>>> print x
[[ 0  1  2  3]
 [ 4  5  6  7]
 [ 8  9 10 11]
 [12 13 14 15]
 [16 17 18 19]]
>>> print sum(x)
[40 45 50 55] # 0+4+8+12+16, 1+5+9+13+17, 
2+6+10+14+18, ...
>>> print sum(x, 1)
[ 6 22 38 54 70] # 0+1+2+3, 4+5+6+7, 8+9+10+11, ...

cumsum(a, index=0)

The cumsum function is a synonym for the accumulate method of the add ufunc.

product(a, index=0)

The product function is a synonym for the reduce method of the multiply ufunc.

cumproduct(a, index=0)

The cumproduct function is a synonym for the accumulate method of the multiply ufunc.

alltrue(a, index=0)

The alltrue function is a synonym for the reduce method of the logical_and ufunc.

sometrue(a, index=0)

The sometrue function is a synonym for the reduce method of the logical_or ufunc.

allclose (x, y, rtol = 1.e-5, atol = 1.e-8) 

This function tests whether or not arrays x and y of an integer or real type are equal subject to the given relative
and absolute tolerances. The formula used is:

| x - y | < atol + rtol * | y |
This means essentially that both elements are small compared to atol or their difference divided by y’s value
is small compared to rtol.
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9. Array Methods 

As we discussed at the beginning of the last chapter, there are very few array methods for good reasons, and
these all depend on the the implementation details. They're worth knowing, though: 

itemsize() 

The itemsize() method applied to an array returns the number of bytes used by any one of its elements. 

>>> a = arange(10)
>>> a.itemsize()
4
>>> a = array([1.0])
>>> a.itemsize()
8
>>> a = array([1], Complex)
>>> a.itemsize()
16

iscontiguous() 

Calling an array's iscontiguous() method returns true if the memory used by A is contiguous. A non-contiguous
array can be converted to a contiguous one by the copy() method. This is useful for interfacing to C routines
only, as far as I know. 

>>> XXX example 

typecode() 

The `typecode()' method returns the typecode of the array it is applied to. While we've been talking about them
as Float, Int, etc., they are represented internally as characters, so this is what you'll get: 

>>> a = array([1,2,3])
>>> a.typecode()
'l'
>>> a = array([1], Complex)
>>> a.typecode()
'D'

byteswapped() 

The byteswapped method performs a byte swapping operation on all the elements in the array.

>>> print a
[1 2 3]
>>> print a.byteswapped()
[16777216 33554432 50331648] 

tostring() 

The tostring method returns a string representation of the data portion of the array it is applied to.  

>>> a = arange(65,100)
>>> print a.tostring()
A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T
47



U   V   W   X   Y   Z   [   \   ]   ^   _   `   a   b   c 

tolist() 

Calling an array's tolist() method returns a hierarchical python list version of the same array:

>>> print a
[[65 66 67 68 69 70 71]
 [72 73 74 75 76 77 78]
 [79 80 81 82 83 84 85]
 [86 87 88 89 90 91 92]
 [93 94 95 96 97 98 99]]
>>> print a.tolist()
[[65, 66, 67, 68, 69, 70, 71], [72, 73, 74, 75, 76, 77, 78], [79, 80, 
81, 82, 83, 84, 85], [86, 87, 88, 89, 90, 91, 92], [93, 94, 95, 96, 97, 
98, 99]] 
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10. Array Attributes 

We've already seen a very useful attribute of arrays, the shape attribute. There are three more, flat, real and
imaginary. 

flat 

Accessing the flat attribute of an array returns the flattened, or ravel()'ed version of that array, without
having to do a function call. The returner array has the same number of elements as the input array, but is of
rank-1.  One cannot set the flat attribute of an array, but one can use the indexing and slicing notations to modify
the contents of the array:

>>> print a
[[0 1 2]
 [3 4 5]
 [6 7 8]]
>>> print a.flat
[0 1 2 3 4 5 6 7 8]
>>> a.flat = arange(9,18)
Traceback (innermost last):
  File "<stdin>", line 1, in ?
AttributeError: Attribute does not exist or cannot be set
>>> a.flat[4] = 100
>>> print a
[[  0   1   2]
 [  3 100   5]
 [  6   7   8]]
>>> a.flat[:] = arange(9, 18)
>>> print a
[[ 9 10 11]
 [12 13 14]
 [15 16 17]]

real and imaginary 

These attributes exist only for complex arrays. They return respectively arrays filled with the real and imaginary
parts of their elements. .imag is a synonym for .imaginary. The arrays returned are not contiguous (except
for arrays of length 1, which are always contiguous.). .real, .imag and .imaginary are modifiable: 

>>> print x
[ 0.        +1.j          0.84147098+0.54030231j  0.90929743-0.41614684j]
>>> print x.real
[ 0.          0.84147098  0.90929743]
>>> print x.imag
[ 1.          0.54030231 -0.41614684]
>>> x.imag = arange(3)
>>> print x
[ 0.        +0.j  0.84147098+1.j  0.90929743+2.j] 
>>> x = reshape(arange(10), (2,5)) + 0j# make complex array
>>> print x
[[ 0.+0.j  1.+0.j  2.+0.j  3.+0.j  4.+0.j]
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 [ 5.+0.j  6.+0.j  7.+0.j  8.+0.j  9.+0.j]]
>>> print x.real
[[ 0.  1.  2.  3.  4.]
 [ 5.  6.  7.  8.  9.]]
>>> print x.typecode(), x.real.typecode()
D d
>>> print x.itemsize(), x.imag.itemsize()
16 8
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11. Special Topics

This chapter holds miscellaneous information which did not neatly fit in any of the other
chapters.

Subclassing

Subclassing Numeric arrays is not possible due to a limitation of Python. The approach taken in the Masked
Array facility (“Masked Arrays” on page 97) is one answer. UserArray.py, described below, can be subclassed,
but this is often unsatisfactory unless you put in a similar effort to that in MA.

Code Organization

Numeric.py and friends

Numeric.py is the most commonly used interface to the Numeric extensions.  It is a Python module which
imports all of the exported functions and attributes from the multiarray module, and then defines some util-
ity functions.  As some of the functions defined in Numeric.py could someday be moved into a supporting
C module, the utility functions and the multiarray object are documented together, in this section.  The
multiarray objects are the core of Numeric Python – they are extension types written in C which are de-
signed to provide both space- and time-efficiency when manipulating large arrays of homogeneous data types,
with special emphasis to numeric data types.

UserArray.py

In the tradition of UserList.py and UserDict.py, the UserArray.py module defines a class whose
instances act in many ways like array objects. 

Matrix.py

The Matrix.py python module defines a class Matrix which is a subclass of UserArray. The only dif-
ferences between Matrix instances and UserArray instances is that the * operator on Matrix performs a
matrix multiplication, as opposed to element-wise multiplication, and that the power operator ** is disallowed
for Matrix instances.

Precision.py

The Precision.py module contains the code which is used to determine the mapping between typecode names
and values, by building small arrays and looking at the number of bytes they use per element.

ArrayPrinter.py

The ArrayPrinter.py module defines the functions used for default printing of arrays. See the section on Textual
Representations of arrays on page57,

MLab.py

The MLab.py module provides some functions which are compatible with the functions of the same name in the
MATLAB programming language. We have written these functions so that they will take Python sequences as
arguments, such as lists, as well as Numeric arrays. 
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bartlett(M)

returns the M-point Bartlett window.

blackman(M)

returns the M-point Blackman window.

corrcoef(x, y=None)

The correlation coefficient

cov(m,y=None)

returns the covariance

cumprod(m, axis=0)

returns the cumulative product of the elments along the axis’th dimension of m.

cumsum(m, axis=0)

returns the cumulative sum of the elements along the axis’th dimension of m.

diag(v, k=0)

returns the k-th diagonal if v is a matrix or returns a matrix with v as the k-th diagonal if v is a vector.

diff(x, n=1)

calculates the first-order, discrete difference approximation to the derivative.

eig(m)

returns the the eigenvalues of m in x and the corresponding eigenvectors in the rows of v.

eye(N, M=N, k=0, typecode=None)

returns a N-by-M matrix where the k-th diagonal is all ones, and everything else is zeros.

fliplr(m)

returns a 2-D matrix m with the rows preserved and columns flipped in the left/right direction. Only works with
2-D arrays.

flipud(m)

returns a 2-D matrix with the columns preserved and rows flipped in the up/down direction. Only works with
2-D arrays.

hamming(M)

returns the M-point Hamming window.

hanning(M)

returns the M-point Hanning window.

kaiser(M, beta)

returns a Kaiser window of length M with shape parameter beta. It depends on the cephes module for the mod-
ified bessel function i0.

max(m, axis=0)

returns the maximum along the axis’th dimension of m.
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mean(m, axis=0)

returns the mean along the axis’th dimension of m. Note: if m is an integer array, the result will be floating
point. This was changed in release 10.1; previously, a meaningless integer divide was used.

median(m)

returns a mean of m along the first dimension of m.

min(m, axis=0)

returns the minimum along the axis’th dimension of m.

msort(m)

returns a sort along the first dimension of m as in MATLAB.

prod(m, axis=0)

returns the product of the elements along the axis’th dimension of m.

ptp(m, axis = 0)

returns the maximum - minimum along the axis’th dimension of m.

rand(d1, ..., dn)

returns a matrix of the given dimensions which is initialized to random numbers from a uniform distribution in
the range [0,1).

rot90(m,k=1)

returns the matrix found by rotating m by k*90 degrees in the counterclockwise direction.

sinc(x)

returns sin(pi*x)/(pi*x) at all points of array x.

squeeze(a)

removes any ones from the shape of a

std(m, axis = 0)

returns the unbiased estimate of the population standard deviation from a sample along the axis’th dimension
of m. (That is, the denominator for the calculation is n-1, not n.)

sum(m, axis=0)

returns the sum of the elements along the axis’th dimension of m.

svd(m)

return the singular value decomposition of m [u,x,v]

trapz(y,x=None)

integrates y = f(x) using the trapezoidal rule.

tri(N, M=N, k=0, typecode=None)

returns a N-by-M matrix where all the diagonals starting from lower left corner up to the k-th are all ones.

tril(m,k=0)

returns the elements on and below the k-th diagonal of m. k=0 is the main diagonal, k > 0 is above and k < 0 is
below the main diagonal.
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triu(m,k=0)

returns the elements on and above the k-th diagonal of m. k=0 is the main diagonal, k > 0 is above and k < 0 is
below the main diagonal.

The multiarray object

The array objects which Numeric Python manipulates is actually a multiarray object, given this name to distin-
guish it from the one-dimensional array object defined in the standard array module.  From here on, however,
the terms array and multiarray will be used interchangeably to refer to the new object type.  multiarray objects
are homogeneous multidimensional sequences.  Starting from the back, they are sequences.  This means that
they are container (compound) objects, which contain references to other objects.  They are multidimensional,
meaning that unlike standard Python sequences which define only a single dimension along which one can it-

erate through the contents, multiarray objects can have up to 40 dimensions.1  Finally, they are homogeneous.
This means that every object in a multiarray must be of the same type.  This is done for efficiency reasons --
storing the type of the contained objects once in the array means that the process of finding the type-specific
operation to operate on each element in the array needs to be done only once per array, as opposed to once per
element.  Furthemore, as the main purpose of these arrays is to process numbers, the numbers can be stored di-
rectly, and not as full-fledged Python objects (PyObject *), thus yielding memory savings.  It is however pos-
sible to make arrays of Python objects, which relinquish both the space and time efficiencies but allow
heterogeneous contents (as we shall see, these arrays are still homogeneous from the Numeric perspective, they
are just arrays of Python object references).

Typecodes

The kind of number stored in an array is described by its typecode. This code is stored internally as a single-
character Python string, but more descriptive names corresponding to the typecodes are made available to the
Python programmer in the Precision.py module. The typecodes are defined as follows:

1. This limit is modifiable in the source code if higher dimensionality is needed.

Table 3: Typecode Listing

Variable defined in
Typecode module

Typecode
character

Description

Char ’c’ Single-character strings

PyObject ’O’ Reference to Python object

UnsignedInt8 ’b’ Unsigned integer using a single byte.

Int ’l’ Python standard integers (i.e. C long integers)

Float ’d’ Python standard floating point numbers
(i.e. C double-precision floats)

n/a ’f’ Single-precision floating point numbers

Complex ’D’ Complex numbers consisting of two double-preci-
sion floats

n/a ’F’ Complex numbers consisting of two single-precision 
floats
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Note on number fomat: the binary format used by Python is that of the underlying C library. [notes about IEEE
formats, etc?]

Indexing in and out, slicing

Indexing arrays works like indexing of other Python sequences, but supports some extensions which are as of

yet not implemented for other sequence types1. The standard [start:stop] notation is supported, with start de-
faulting to 0 (the first index position) and stop defaulting to the length of the sequence, as for lists and tuples.
In addition, there is an optional stride argument, which specifies the stride size between successive indices in
the slice. It is expressed by a integer following a second : immediately after the usual start:stop slice. Thus
[0:11:2] will slice the array at indices 0, 2, 4, .. 10. The start and stop indices are optional, but the first : must
be specified for the stride interpretation to occur. Therefore, [::2] means slice from beginning to end, with a
stride of 2 (i.e. skip an index for each stride). If the start index is omitted and the stride is negative, the indexing
starts from the end of the sequence and works towards the beginning of the sequence. If the stop index is omitted
and the stride is negative, the indexing stops at the beginning of the sequence.

>>> print x
[ 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19]
>>> print x[10]
10
>>> print x[:10]
[0 1 2 3 4 5 6 7 8 9]
>>> print x[5:15:3]
[ 5  8 11 14]
>>> print x[:10:2]
[0 2 4 6 8]
>>> print x[10::-2]
[10  8  6  4  2  0]
>>> print x[::-1]
[19 18 17 16 15 14 13 12 11 10  9  8  7  6  5  4  3  2  1  0]

Int0, Int8, Int16, 
Int32, Int64, Int128

n/a These correspond to machine-dependent typecodes: 
Int0 returns the typecode corresponding to the 
smallest available integer, Int8 that corresponding 
to the smallest available integer with at least 8 bits, 
Int16 that with at least 16 bits, etc. If a typecode is 
not available (e.g. Int64 on a 32-bit machine), the 
variable is not defined.

Float0, Float8, Float16, 
Float32, Float64, 
Float128

n/a Same as Int0, Int8 etc. except for floating point 
numbers.

Complex0, Complex8, 
Complex16, Complex32, 
Complex64, Complex128

n/a Same as Float0, etc., except that the number of 
bits refers to the precision of each of the two (real 
and imaginary) parts of the complex number.

1. The Python syntax can allow other Python datatypes to use both the stride notation and multidimen-
sional indexing, and it is relatively simple to write Python classes which support these operations. See
the Python Reference manual for details.

Table 3: Typecode Listing

Variable defined in
Typecode module

Typecode
character

Description
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It is important to note that the out-of-bounds conditions follow the same rules as standard Python indexing, so
that slices out of bounds are trimmed to the sequence boundaries, but element indexing with out-of-bound in-
dices yields an IndexError:

>>> print x[:100]
[ 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19]
>>> print x[-200:4]
[0 1 2 3]
>>> x[100]
Traceback (innermost last):
  File "<stdin>", line 1, in ?
IndexError: index out of bounds

The second difference between array indexing and other sequences is that arrays provide multidimensional in-
dexing. An array of rank N can be indexed with up to N indices or slices (or combinations thereof. Indices
should be integers (with negative integers indicating offsets from the end of the dimension, as for other Python
sequences), and slices can have, as explained above, one or two :’s separating integer arguments. These indices
and slies must be separated by commas, and correspond to sequential dimensions starting from the leftmost
(first) index on. Thus a[3] means index 3 along dimension 0. a[3,:,-4] means the slice of a along three
dimensions: index 3 along the first dimension, the entire range of indices along the second dimension, and the
4th from the end index along the third dimension. If the array being indexed has more dimensions than are spec-
ified in the multidimensional slice, those dimensions are assumed to be sliced from beginning to end. Thus, if
a is a rank 3 array,

a[0] == a[0,:] == a[0,:,:]

Ellipses

A special slice element called Ellipses (and written ...) is used to refer to a variable number of slices from
beginning to end along the current dimension. It is a shorthand for a set of such slices, specifically the number
of dimensions of the array being indexed minus those which are already specified. Only the first (leftmost) El-
lipses in an multidimensional slice is expanded, while the others are single dimensional slices from beginning
to end.

Thus, if a is a rank-6 array,

a[3,:,:,:,-1,:] == a[3,...,-1,:] == a[3,...,-1,...].

NewAxis

There is another special symbol which can be used inside indexing operations to create new dimensions in the
returned array. The reference NewAxis, used as one of the comma-separated slice elements, does not change
the selection of the subset of the array being indexed, but changes the shape of the array returned by the indexing
operation, so that an additional dimension (of length 1) is created, at the dimension position corresponding to
the location of NewAxis within the indexing sequence. Thus, a[:,3,NewAxis,-3] will perform the index-
ing of a corresponding to the slice [a:,3,-3], but will also modify the shape of a so that the new shape of a
is (a.shape[0], a.shape[1], 1, a.shape[2]). This operation is especially useful in conjunction
with the broadcasting feature described next, as it replaces a lengthy but common operation with a simple no-
tation (in the example above, the same effect can be had with

reshape(a[:,3,-1], (a.shape[0], a.shape[1], 1, a.shape[2])).

Set-indexing and Broadcasting

The indexing rules described so far specify exactly the behavior of get-indexing. For set-indexing, the rules are
exactly the same, and describe the slice of the array on the left hand side of the assignment operator which is
the target of the assignment. The only point left to mention is the process of assigning from the source (on the
right hand side of the assignment) to the target (on the left hand side).
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If both source and target have the same shape, then the assignment is done element by element. The typecode
of the target specifies the casting which can be applied in the case of a typecode mismatch between source and
target. If the typecode of the source is “lower” than that of the target, then an ’up-cast’ is performed and no loss
in precision results. If the typecode of the source is “higher” than that of the target, then a downcast is per-
formed, which may lose precision (as discussed in the description of the array call, these casts are truncating
casts, not rounding casts). Complex numbers cannot be cast to non-complex numbers.

If the source and the target have different shapes, Numeric Python attempts to broadcast the contents of the
source over the range of the target. This broadcasting occurs for all dimensions where the source has dimension
1 or 0 (i.e., is absent). If there exists a dimension for which the two arrays have differing lengths, and the length
of that dimension in the source is not 1, then the assignment fails and an exception (ValueError) is raised, noti-
fying the user that the arrays are not aligned.

Axis specifications

In many of the functions defined in this document, indices are used to refer to axes. The numbering scheme is
the same as that used by indexing in Python: the first (leftmost) axis is axis 0, the second axis is axis 1, etc. Axis
-1 refers to the last axis, -2 refers to the next-to-last axis, etc.

Textual representations of arrays

The algorithm used to display arrays as text strings is defined in the file ArrayPrinter.py, which defines a func-
tion array2string (imported into Numeric’s namespace) which offers considerable control over how arrays are
output. The range of options to the array2string function will be described first, followed by a description of
which options are used by default by str and repr.

Note that the optional package MA, if imported, modifies this process so that very long arrays are not printed;
rather, a summary of their shape and type are shown. You may wish to import MA even if you do not use it oth-
erwise, to get this effect, because without it accidentally attempting to print a very long array can take a very
long time to convert, giving the appearance that the program has hung.

array2string(a, max_line_width = None, precision = None,
suppress_small = None, separator=' ', array_output=0):

The array2string function takes an array and returns a textual representation of it. Each dimension is in-
dicated by a pair of matching square brackets ([]), within which each subset of the array is output. The orien-
tation of the dimensions is as follows: the last (rightmost) dimension is always horizontal, so that the frequent
rank-1 arrays use a minimum of screen real-estate. The next-to-last dimension is displayed vertically if present,
and any earlier dimension is displayed with additional bracket divisions. For example:

>>> a = arange(24)
>>> print array2string(a)
[ 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23]
>>> a.shape = (2,10)
>>> print array2string(a)
[[ 0  1  2  3  4  5  6  7  8  9 10 11]
 [12 13 14 15 16 17 18 19 20 21 22 23]]
>>> a.shape = (2,3,4)
>>> print array2string(a)
[[[ 0  1  2  3]
  [ 4  5  6  7]
  [ 8  9 10 11]]
 [[12 13 14 15]
  [16 17 18 19]
  [20 21 22 23]]]

The max_line_width argument specifies the maximum number of characters which the array2string rou-
tine uses in a single line. If it is set to None, then the value of the sys.output_line_width attribute is
looked up. If it exists, it is used. If not, the default of 77 characters is used.
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>>> print array2string(x)
[ 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
      26 27 28 29]
>>> sys.output_line_width = 30
>>> print array2string(x)
[ 0  1  2  3  4  5  6  7  8  9
      10 11 12 13 14 15 16 17
      18 19 20 21 22 23 24 25
      26 27 28 29]

The precision argument specifies the number of digits after the decimal point which are used. If a value of
None is used, the value of the sys.float_output_precision is looked up. If it exists, it is used. If not,
the default of 8 digits is used.

>>> x = array((10.11111111111123123111, pi))
>>> print array2string(x)
[ 10.11111111   3.14159265]
>>> print array2string(x, precision=3)
[ 10.111   3.142]
>>> sys.float_output_precision = 2
>>> print array2string(x)
[ 10.11   3.14]

The suppress_small argument specifies whether small values should be suppressed (and output as 0). If a
value of None is used, the value of the sys.float_output_suppress_small is looked up. If it exists,
it is used (all that matters is whether it evaluates to true or false). If not, the default of 0 (false) is used. This vari-
able also interacts with the precision parameters, as it can be used to suppress the use of exponential notation.

>>> print x
[ 1.00000000e-005  3.14159265e+000]
>>> print array2string(x)
[ 1.00000000e-005  3.14159265e+000]
>>> print array2string(x, suppress_small=1)
[ 0.00001     3.14159265]
>>> print array2string(x, precision=3)
[ 1.000e-005  3.142e+000]
>>> print array2string(x, precision=3, suppress_small=1)
[ 0.     3.142]

The separator argument is used to specify what character string should be placed between two numbers
which do not straddle a dimension. The default is a single space.

>>> print array2string(x)
[   0  100  200  300  400  500  600  700  800  900 100]
>>> print array2string(x, separator = ', ')
[   0,  100,  200,  300,  400,  500,  600,  700,  800,  900, 100]

Finally, the last attribute, array_output, specifies whether to prepend the string "array(” and append either the
string ")" or ", ’X’)" where X is a typecode for non-default typecodes (in other words, the typecode will only be
displayed if it is not that corresponding to Float, Complex or Int, which are the standard typecodes associated
with floating point numbers, complex numbers and integers respectively). The array() is so that an eval of the
returned string will return an array object (provided a comma separator is also used).

>>> array2string(arange(3))
[0 1 2]
>>> eval(array2string(arange(3), array_output=1))
Traceback (innermost last):
  File "<stdin>", line 1, in ?
  File "<string>", line 1
    array([0 1 2])
             ^
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SyntaxError: invalid syntax
>>> type(eval(array2string(arange(3), array_output=1, separator=',')))
<type 'array'>
>>> array2string(arange(3), array_output=1)
'array([0, 1, 2])'
>>> array2string(zeros((3,), 'i') + arange(3), array_output=1)
"array([0, 1, 2],'i')"

The str and repr operations on arrays call array2string with the max_line_width, precision
and suppress_small all set to None, meaning that the defaults are used, but that modifying the attributes
in the sys module will affect array printing. str uses the default separator and does not use the array() text,
while repr uses a comma as a separator and does use the array(...) text.

>>> x = arange(3)
>>> print x
[0 1 2]
>>> str(x)
'[0 1 2]'
>>> repr(x)
'array([0, 1, 2])' # note the array(...) and ,’s
>>> x = arange(0,.01,.001)
>>> print x
[ 0.     0.001  0.002  0.003  0.004  0.005  0.006  0.007  0.008  0.009]
>>> import sys
>>> sys.float_output_precision = 2
>>> print x
[ 0.    0.    0.    0.    0.    0.01  0.01  0.01  0.01  0.01]

Comparisons

Comparisons of multiarray objects results using the normal comparison operators (such as == or >) result in
array results. These comparisons use the routines for comparison describe in “Logical Ufuncs” on page 31. Note
that the logical operators “and” and “or” cannot operate on arrays. The bit operation ufuncs & and | may be use-
ful. The functions sometrue and alltrue do reduction using logical_or and logical_and.

Storing arrays on disk

Storing Numeric (and Masked) arrays to disk can be done using the pickle module. Consult standard Python
documentation for details. There are also modules available for a variety of other formats, such as netCDF. See
the web site for some helpful links.

Dealing with floating point exceptions

Attempts to use NaN’s as missing values have proven frustrating and not very portable. Consider “Masked Ar-
rays” on page97 instead. Python’s facilty for floating point error control, fpectl, has not yet been incorporated
into Numeric.
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12. Writing a C extension to NumPy

Introduction

There are two applications that require using the NumPy array type in C extension modules: 

• Access to numerical libraries: Extension modules can be used to make numerical libraries written in C (or
languages linkable to C, such as Fortran) accessible to Python programs. The NumPy array type has the ad-
vantage of using the same data layout as arrays in C and Fortran. 

• Mixed-language numerical code: In most numerical applications, only a small part of the total code is CPU
time intensive. Only this part should thus be written in C, the rest can be written in Python. NumPy arrays
are important for the interface between these two parts, because they provide equally simple access to their
contents from Python and from C. 

This document is a tutorial for using NumPy arrays in C extensions. 

Preparing an extension module for NumPy arrays

To make NumPy arrays available to an extension module, it must include the header file arrayobject.h,
after the header file Python.h that is obligatory for all extension modules. The file arrayobject.h comes
with the NumPy distribution; depending on where it was installed on your system you might have to tell your
compiler how to find it. The Numeric installation process installed arrayobject.h in a subdirectory Numeric in
your Python include path, so you should include it this way:

#include “Numeric/arrayobject.h”

Important Tip

Is your C extension using Numeric blowing up? Maybe you didn’t call import_array(). If the 
extension is not in a single file, also define PY_ARRAY_UNIQUE_SYMBOL.

In addition to including arrayobject.h, the extension must call import_array() in its initialization
function, after the call to Py_InitModule(). This call makes sure that the module which implements the ar-
ray type has been imported, and initializes a pointer array through which the NumPy functions are called. If you
forget this call, your extension module will crash on the first call to a NumPy function.

If your extension does not reside in a single file, there is an additional step that is necessary. Be sure to define
the symbol PY_ARRAY_UNIQUE_SYMBOL to some name (the same name in all the files comprising the ex-
tension), upstream from the include of arrayobject.h. Typically this would be in some header file that is includ-
ed before arrayobject.h. The import_array statement goes into the init function for the module as before, and not
in any of the other files. Of course, it is ok to define PY_ARRAY_UNIQUE_SYMBOL symbol even if you
only use one file for the extension. 

If you will be manipulating ufunc objects, you should also include the file ufuncobject.h, also available
as part of the NumPy distribution in the Include directory and usually installed in subdirectory Numeric.

All of the rules related to writing extension modules for Python apply.  The reader unfamiliar with these rules
is encouraged to read the standard text on the topic, “Extending and Embedding the Python Interpreter,” avail-
able as part of the standard Python documentation distribution.
61



Accessing NumPy arrays from C

Types and Internal Structure

NumPy arrays are defined by the structure PyArrayObject, which is an extension of the structure PyOb-
ject. Pointers to PyArrayObject can thus safely be cast to PyObject pointers, whereas the inverse is
safe only if the object is known to be an array. The type structure corresponding to array objects is
PyArray_Type. The structure PyArrayObject has four elements that are needed in order to access the ar-
ray's data from C code: 

int nd

The number of dimensions in the array.

int *dimensions

A pointer to an array of nd integers, describing the number of elements along each dimension. The
sizes are in the conventional order, so that for any array a, 
a.shape==(dimensions[0], dimensions[1], ..., dimensions[nd-1]).

int *strides

A pointer to an array of nd integers, describing the address offset between two successive data ele-
ments along each dimension. Note that strides can also be negative!  Each number gives the number
of bytes to add to a pointer to get to the next element in that dimension. For example, if myptr cur-
rently points to element of a rank-5 array at indices 1,0,5,3,2 and you want it to point to element
1,0,5,4,2 then you should add strides[3] to the pointer: myptr += strides[3]. This
works even if (and is especially useful when) the array is not contiguous in memory.

char *data

A pointer to the first data element of the array.
The address of a data element can be calculated from its indices and the data and strides pointers. For example,
element [i, j] of a two-dimensional array has the address data + i*array->strides[0] + j*ar-
ray->strides[1]. Note that the stride offsets are in bytes, not in storage units of the array elements. There-
fore address calculations must be made in bytes as well, starting from the data pointer, which is always a char
pointer. To access the element, the result of the address calculation must be cast to a pointer of the required
type. The advantage of this arrangement is that purely structural array operations (indexing, extraction of sub-
arrays, etc.) do not have to know the type of the array elements. 

Element data types

The type of the array elements is indicated by a type number, whose possible values are defined as constants in
arrayobject.h, as given in Table 3.

Table 4: C constants corresponding to storage types

Constant element data type

PyArray_CHAR char

PyArray_UBYTE unsigned char

PyArray_SBYTE signed char

PyArray_SHORT short

PyArray_INT int

PyArray_LONG long
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The type number is stored in array->descr->type_num. Note that the names of the element type con-
stants refer to the C data types, not the Python data types. A Python int is equivalent to a C long, and a Py-
thon float corresponds to a C double. Many of the element types listed above do not have corresponding
Python scalar types (e.g. PyArray_INT). 

Contiguous arrays

An important special case of a NumPy array is the contiguous array. This is an array whose elements occupy a
single contiguous block of memory and have the same order as a standard C array. (Internally, this is decided
by examinging the array array->strides. The value of array->strides[i] is equal to the number of bytes
that one must move to get to an element when the i’th index is increased by 1). Arrays that are created from
scratch are always contiguous; non-contiguous arrays are the result of indexing and other structural array oper-
ations. The main advantage of contiguous arrays is easier handling in C; the pointer array->data is cast to
the required type and then used like a C array, without any reference to the stride values. This is particularly im-
portant when interfacing to existing libraries in C or Fortran, which typically require this standard data layout.
A funct ion  tha t  requires  input  a r rays  to  be  cont iguous mus t  cal l  the convers ion  funct ion
PyArray_ContiguousFromObject(), described in the section “Accepting input data from any se-
quence type".

Zero-dimensional arrays

NumPy permits the creation and use of zero-dimensional arrays, which can be useful to treat scalars and higher-
dimensional arrays in the same way. However, library routines for general use should not return zero-demen-
sional arrays, because most Python code is not prepared to handle them. Moreover, zero-dimensional arrays can
create confusion because they behave like ordinary Python scalars in many circumstances but are of a different
type. NumPy provides a conversion function from zero-dimensional arrays to Python scalars, which is de-
scribed in the section “Returning arrays from C functions". 

A simple example

The following function calculates the sum of the diagonal elements of a two-dimensional array, verifying that
the array is in fact two-dimensional and of type PyArray_DOUBLE. 

static PyObject *
trace(PyObject *self, PyObject *args)
{
  PyArrayObject *array;
  double sum;
  int i, n;

  if (!PyArg_ParseTuple(args, "O!",
                        &PyArray_Type, &array))
    return NULL;
  if (array->nd != 2 || array->descr->type_num != PyArray_DOUBLE) {

PyArray_FLOAT float

PyArray_DOUBLE double

PyArray_CFLOAT float[2]

PyArray_CDOUBLE double[2]

PyArray_OBJECT PyObject *

Table 4: C constants corresponding to storage types

Constant element data type
63



    PyErr_SetString(PyExc_ValueError,
                    "array must be two-dimensional and of type float");
    return NULL;
  }

  n = array->dimensions[0];
  if (n > array->dimensions[1])
    n = array->dimensions[1];
  sum = 0.;
  for (i = 0; i < n; i++)
    sum += *(double *)(array->data + i*array->strides[0] + i*array-
>strides[1]);

  return PyFloat_FromDouble(sum);
}

Accepting input data from any sequence type

The example in the last section requires its input to be an array of type double. In many circumstances this is
sufficient, but often, especially in the case of library routines for general use, it would be preferable to accept
input data from any sequence (lists, tuples, etc.) and to convert the element type to double automatically where
possible. NumPy provides a function that accepts arbitrary sequence objects as input and returns an equivalent
array of specified type (this is in fact exactly what the array constructor Numeric.array() does in Python
code): 

PyObject *
PyArray_ContiguousFromObject(PyObject *object,
                             int type_num,
                             int min_dimensions,
                             int max_dimensions);
The first argument, object, is the sequence object from which the data is taken. The second argument,
type_num, specifies the array element type (see the table in the section “Element data types". If you want the
function to the select the ``smallest'' type that is sufficient to store the data, you can pass the special value
PyArray_NOTYPE. The remaining two arguments let you specify the number of dimensions of the resulting
array, which is guaranteed to be no smaller than min_dimensions and no larger than max_dimensions,
except for the case max_dimensions == 0, which means that no upper limit is imposed.

If the input data is not compatible with the type or dimension restrictions, an exception is raised. Since the array
returned by PyArray_ContiguousFromObject() is guaranteed to be contiguous, this function also pro-
vides a method of converting a non-contiguous array to a contiguous one. If the input object is already a con-
tiguous array of the specified type, it is passed on directly; there is thus no performance or memory penalty for
calling the conversion function when it is not required. Using this function, the example from the last section
becomes 

static PyObject *
trace(PyObject *self, PyObject *args)
{
  PyObject *input;
  PyArrayObject *array;
  double sum;
  int i, n;

  if (!PyArg_ParseTuple(args, "O", &input))
    return NULL;
  array = (PyArrayObject *)
          PyArray_ContiguousFromObject(input, PyArray_DOUBLE, 2, 2);
  if (array == NULL)
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    return NULL;

  n = array->dimensions[0];
  if (n > array->dimensions[1])
    n = array->dimensions[1];
  sum = 0.;
  for (i = 0; i < n; i++)
    sum += *(double *)(array->data + i*array->strides[0] + i*array-
>strides[1]);
  
  Py_DECREF(array);
  return PyFloat_FromDouble(sum);
}
Note that no explicit error checking is necessary in this version, and that the array reference that is returned by
PyArray_ContiguousFromObject() must be destroyed by calling Py_DECREF(). 

Creating NumPy arrays

NumPy arrays can be created by calling the function 

PyObject *
PyArray_FromDims(int n_dimensions,
                 int dimensions[n_dimensions],
                 int type_num);
The first argument specifies the number of dimensions, the second one the length of each dimension, and the
third one the element data type (see the table in the section “Element data types". The array that is returned is
contiguous, but the contents of its data space are undefined. There is a second function which permits the cre-
ation of an array object that uses a given memory block for its data space: 

PyObject *
PyArray_FromDimsAndData(int n_dimensions,
                        int dimensions[n_dimensions]
                        int item_type
                        char *data);
The first three arguments are the same as for PyArray_FromDims(). The fourth argument is a pointer to the
memory block that is to be used as the array's data space. It is the caller's responsibility to ensure that this mem-
ory block is not freed before the array object is destroyed. With few exceptions (such as the creation of a tem-
porary array object to which no reference is passed to other functions), this means that the memory block may
never be freed, because the lifetime of Python objects are difficult to predict. Nevertheless, this function can be
useful in special cases, for example for providing Python access to arrays in Fortran common blocks. 

Returning arrays from C functions

Array objects can of course be passed out of a C function just like any other object. However, as has been men-
tioned before, care should be taken not to return zero-dimensional arrays unless the receiver is known to be pre-
pared to handle them. An equivalent Python scalar object should be returned instead. To facilitate this step,
NumPy provides a special function 

PyObject *
PyArray_Return(PyArrayObject *array);
which returns the array unchanged if it has one or more dimensions, or the appropriate Python scalar object in
case of a zero-dimensional array. 
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A less simple example

The function shown below performs a matrix-vector multiplication by calling the BLAS function DGEMV. It
takes three arguments: a scalar prefactor, the matrix (a two-dimensional array), and the vector (a one-dimen-
sional array). The return value is a one-dimensional array. The input values are checked for consistency. In ad-
dition to providing an illustration of the functions explained above, this example also demonstrates how a
Fortran routine can be integrated into Python. Unfortunately, mixing Fortran and C code involves machine-spe-
cific peculiarities. In this example, two assumptions have been made: 

• The Fortran function DGEMV must be called from C as dgemv_. Many Fortran compilers apply this rule,
but the C name could also be dgemv or DGEMV (or in principle anything else; there is no fixed standard). 

• Fortran integers are equivalent to C longs, and Fortran double precision numbers are equivalent      to
C doubles. This works for all systems that I have personally used, but again there is no standard.

Also note that the libraries that this function must be linked to are system-dependent; on my Linux system (us-
ing gcc/g77), the libraries are blas and f2c. So here is the code: 

static PyObject *
matrix_vector(PyObject *self, PyObject *args)
{
  PyObject *input1, *input2;
  PyArrayObject *matrix, *vector, *result;
  int dimensions[1];
  double factor[1];
  double real_zero[1] = {0.};
  long int_one[1] = {1};
  long dim0[1], dim1[1];

  extern dgemv_(char *trans, long *m, long *n,
                double *alpha, double *a, long  *lda,
                double *x, long *incx,
                double *beta, double *Y, long *incy);

  if (!PyArg_ParseTuple(args, "dOO", factor, &input1, &input2))
    return NULL;
  matrix = (PyArrayObject *)
            PyArray_ContiguousFromObject(input1, PyArray_DOUBLE, 2, 2);
  if (matrix == NULL)
    return NULL;
  vector = (PyArrayObject *)
            PyArray_ContiguousFromObject(input2, PyArray_DOUBLE, 1, 1);
  if (vector == NULL)
    return NULL;
  if (matrix->dimensions[1] != vector->dimensions[0]) {
    PyErr_SetString(PyExc_ValueError,
                    "array dimensions are not compatible");
    return NULL;
  }

  dimensions[0] = matrix->dimensions[0];
  result = (PyArrayObject *)PyArray_FromDims(1, dimensions, 
PyArray_DOUBLE);
  if (result == NULL)
    return NULL;

  dim0[0] = (long)matrix->dimensions[0];
66



•
W

riting a C
 extension to N

um
P

y

  dim1[0] = (long)matrix->dimensions[1];
  dgemv_("T", dim1, dim0, factor, (double *)matrix->data, dim1,
         (double *)vector->data, int_one,
         real_zero, (double *)result->data, int_one);

  return PyArray_Return(result);
}
Note that PyArray_Return() is not really necessary in this case, since we know that the array being re-
turned is one-dimensional. Nevertheless, it is a good habit to always use this function; its performance cost is
practically zero. 
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13. C API Reference

This chapter describes the API for ArrayObjects and Ufuncs.

ArrayObject C Structure and API

Structures

The PyArrayObject is, like all Python types, a kind of PyObject. Its definition is:

typedef struct { 
PyObject_HEAD 
char *data; 
int nd; 
int *dimensions, *strides; 
PyObject *base; 
PyArray_Descr *descr; 
int flags; 

} PyArrayObject; 
Where PyObject_HEAD is the standard PyObject header, and the other fields are:

char *data

A pointer to the first data element of the array.

int nd

The number of dimensions in the array.

int *dimensions

A pointer to an array of nd integers, describing the number of elements along each dimension. The
sizes are in the conventional order, so that for any array a, 
a.shape==(dimensions[0], dimensions[1], ..., dimensions[nd-1]).

int *strides

A pointer to an array of nd integers, describing the address offset between two successive data ele-
ments along each dimension. Note that strides can also be negative!  Each number gives the number
of bytes to add to a pointer to get to the next element in that dimension. For example, if myptr cur-
rently points to an element in a rank-5 array at indices 1,0,5,3,2 and you want it to point to ele-
ment 1,0,5,4,2 then you should add strides[3] to the pointer: myptr += strides[3].
This works even if (and is especially useful when) the array is not contiguous in memory.

PyObject *base

Used internally in arrays that are created as slices of other arrays. Since the new array shares its data
area with the old one, the original array’s reference count is incremented.  When the subarray is gar-
bage collected, the base array’s reference count is decremented.

PyArray_Desc *descr

See below.
68



•
C

 A
P

I R
eference
int flags

A bitfield indicating whether the array:

• is contiguous (rightmost bit)

• owns the dimensions (next bit to the left) (???)

• owns the strides (next bit to the left) (???)

• owns the data area

The ownership bits are used by NumPy internally to manage memory allocation and deallocation.
They can be false if the array is the result of e.g. a slicing operation on an existing array.

PyArrayDescr *descr

a pointer to a data structure that describes the array and has some handy functions. The slots in this
structure are:

PyArray_VectorUnaryFunc *cast[]

an array of function pointers which will cast this arraytype to each of the other data types.

PyArray_GetItemFunc *getitem 

a pointer to a function which returns a PyObject of the appropriate type given a (char) pointer to
the data to get.

PyArray_SetItemFunc *setitem

a pointer to a function which sets the element pointed to by the second argument to converted
Python Ojbect given as the first argument. 

int type_num

A number indicating the datatype of the array (i.e. a PyArray_XXXX)

char *one

A pointer to a representation of one for this datatype.

char *zero 

A pointer to a representation of zero for this datatype (especially useful for PyArray_OBJECT
types)

char type

A character representing the array’s typecode (one of 'cb1silfdFDO'). 

The ArrayObject API

In the following op is a pointer to a PyObject and arp is a pointer to a PyArrayObject. Routines which
return PyObject * return NULL to indicate failure (and follow the standard exception-setting mechanism).
Functions followed by a dagger (†) are functions which return PyObjects whose reference count has been in-
creased by one (new references). See the Python Extending/Embedding manual for details on reference-count
management.

int PyArray_Check(op) 

returns 1 if op is a PyArrayObject or 0 if it is not.

int PyArray_SetNumericOps(d) 

internally used by umath to setup some of its functions.

int PyArray_INCREF(op)

Used for arrays of python objects (PyArray_OBJECT) to increment the reference count of every
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python object in the array op. User code does not typically need to call this.

int PyArray_XDECREF(op)

Used for arrays of python objects (PyArray_OBJECT) to decrement the reference count of every
python object in the array op.

PyArrayError

Exports the array error object. I don't know its use.

void PyArray_SetStringFunction(op,repr)

Sets the function for representation of all arrays to op which should be a callable PyObject. If
repr is non-zero then the function corresponding to the repr string representationis set, otherwise,
that for the str string representation is set.

PyArray_Descr PyArray_DescrFromType(type)

returns a PyArray_Descr structure for the datatype given by type. The input type can be either
the enumerated types (PyArray_Float, etc.) or a character ('cb1silfdFDO').

PyObject *PyArray_Cast(arp, type) †

returns a pointer to a PyArrayObject that is arp cast to the array type specified by type. It is
just a wrapper around the function defined in arp->descr->cast that handles non-contiguous
arrays and arrays of Python objects appropriately.

int PyArray_CanCastSafely(fromtype,totype)

returns 1 if the array with type fromtype can be cast to an array of type totype without loss of
accuracy, otherwise it returns 0. It allows conversion of longs to ints which is not safe on 64-bit
machines. The inputs fromtype and totype are the enumerated array types (e.g.
PyArray_SBYTE).

int PyArray_ObjectType(op, min_type)

returns the typecode to use for a call to an array creation function given an input python sequence
object op and a minimum type value, min_type. It looks at the datatypes used in op, compares
this with min_type and returns a consistent type value that can be used to store all of the data in
op and satisfying at the minimum the precision of min_type.

int _PyArray_multiply_list(list,n) 

is a utility routine to multiply an array of n integers pointed to by list.

int PyArray_Size(op) 

is a useful function for returning the total number of elements in op if op is a PyArrayObject, 0
otherwise.

PyObject *PyArray_FromDims(nd,dims,type) †

returns a pointer to a newly constructed PyArrayObject (returned as a PyObject) given the
number of dimensions in nd, an array dims of nd integers specifying the size of the array, and the
enumerated type of the array in type.

PyObject *PyArray_FromDimsAndData(nd,dims,type,data) †

This function should only be used to access global data that will never be freed (like FORTRAN
common blocks). It builds a PyArrayObject in the same way as PyArray_FromDims but in-
stead of allocating new memory for the array elements it uses the bytes pointed to by data (a
char *).
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PyObject *PyArray_ContiguousFromObject(op,type,min_dim,max_dim) †

returns a contiguous array of type type from the (possibly nested) sequence object op. If op is a
contiguous PyArrayObject then a reference is made; if op is a non-contiguous then a copy is per-
formed to get a contiguous array; if op is not a PyArrayObject then a new PyArrayObject
is created from the sequence object and returned. The two parameters min_dim and max_dim let
you specify the expected rank of the input sequence. An error will result if the resulting PyArray-
Object does not have rank bounded by these limits. To specify an exact rank requirement set
min_dim = max_dim. To allow for an arbitrary number of dimensions specify min_dim =
max_dim = 0.

PyObject *PyArray_CopyFromObject(op,type,min_dim,max_dim) †

returns a contiguous array similar to PyArray_ContiguousFromObject except that a copy of
op is performed even if a shared array could have been used.

PyObject *PyArray_FromObject(op,type,min_dim,max_dim) †

returns a reference to op if op is a PyArrayObject and a newly constructed PyArrayObject
if op is any other (nested) sequence object. You must use strides to access the elements of this pos-
sibly discontiguous array correctly.

PyObject *PyArray_Return(apr) 

returns a pointer to apr with some extra code to check for errors and be sure that zero-dimensional
arrays are returned as scalars. If a scalar is returned instead of apr then apr’s reference count is
decremented, so it is safe to use this function in the form :
return PyArray_Return (apr);

PyObject *PyArray_Reshape(apr,op) †

returns a reference to apr with a new shape specified by op which must be a one dimensional se-
quence object. One dimension may be specified as unknown by giving a value less than zero, its val-
ue will be calculated from the size of apr.

PyObject *PyArray_Copy(apr) †

returns an element-for-element copy of apr

PyObject *PyArray_Take(a,indices,axis) †

the equivalent of take(a, indices, axis) which is a method defined in the Numeric module
that just calls this function. 

int PyArray_As1D(*op, char **ptr, int *n, int type)

This function replaces op with a pointer to a contiguous 1-D PyArrayObject (using
PyArray_ContiguousFromObject) and sets as output parameters a pointer to the first byte of
the array in ptr and the number of elements in the array in n. It returns -1 on failure (op is not a
1-D array or sequence object that can be cast to type type) and 0 on success. 

int PyArray_As2D(*op, char **ptr, int *m, int *n, int type) 

This function replaces op with a pointer to a contiguous 2-D PyArrayObject (using
PyArray_ContiguousFromObject). It returns -1 on failure (op is not a 2-D array or nested
sequence object that can be cast to type type) and 0 on success. It also sets as output parameters: an
array of pointers in ptr which can be used to access the data as a 2-D array so that ptr[i][j] is a point-
er to the first byte of element [i,j] in the array; m and n are set to respectively the number of rows and
columns of the array. 

int PyArray_Free(op,ptr) 

is supposed to free the allocated data structures and decrease object references when using
PyArray_As1D and PyArray_As2D but there are suspicions that this code is buggy.
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Notes

Number formats, overflow issues, NaN/Inf representations, fpectl module, how to deal with ’missing’ values.

UfuncObject C Structure and API

C Structure

The ufuncobject is a generic function object that can be used to perform fast operations over Numeric Arrays
with very useful broadcasting rules and type conversions performed automatically. The ufuncobject and its API
make it easy and graceful to add arbitrary functions to Python which operate over Numeric arrays. All of the
unary and binary operators currently available in the Numerical extensions (like sin, cos, +, logical_or, etc.) are
implemented using this object. The hooks are all in place to make it very easy to add any function that takes one
or two (double) arguments and returns a single (double) argument.  It is not difficult to add support routines in
order to handle arbitrary functions whose total number of input/output arguments is less than some maximum
number (currently 10).

typedef struct { 
PyObject_HEAD 
int *ranks, *canonical_ranks; 
int nin, nout, nargs; 
int identity; 
PyUFuncGenericFunction *functions; 
void **data; 
int ntypes, nranks, attributes; 
char *name, *types; 
int check_return; 

} PyUFuncObject;
where:

int *ranks

unused.

int *canonical_ranks

unused

int nin

the number of input arguments to function

int nout

the number of output arguments for the function

int nargs

the total number of arguments  = nin + nout

int identity

a flag telling whether the identity for this function is 0 or 1 for use in the reduce method for a zero
size array input.

PyUFuncGenericFunction *functions

an array of functions that perform the innermost looping over the input and output arrays (I think this
is over a single axis). These functions call the underlying math function with the data from the input
arguments along this axis and return the outputs of the function into the correct place in the output
arrayobject (with appropriate typecasting). These functions are called by the general looping code.
There is one function for each of the supported datatypes. Function pointers to do this looping for
types 'f', 'd', 'F', and 'D', are provided in the C-API for functions that take one or two argu-
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ments and return one argument. Each PyUFuncGenericFunction returns void and has the fol-
lowing argument list (in order):

args

an array of pointers to the data for each of the input and output arguments with input arguments
first and output arguments immediately following. Each element of args is a char * to the
first byte in the corresponding input or output array.

dimensions

a pointer to a single int giving the size of the axis being looped over.

steps

an array of ints giving the number of bytes to skip to go to the next element of the array for this
loop. There is an entry in the array for each of the input and output arguments, with input argu-
ments first and output arguments immediately following.

func

a pointer to the underlying math function to be called at each point in this inner loop. This is a
void * and must be recast to the required type before actually calling the function e.g. to a
pointer to a function that takes two doubles and returns a double). If you need to write your
own PyUFuncGenericFunction, it is most readable to also have a typedef statement that
defines your specific underlying function type so the function pointer cast is somewhat readable.

void **data

a pointer to an array of functions (each cast to void *) that compute the actual mathematical func-
tion for each set of inputs and outputs. There should be a function in the array for each supported data
type. This function will be called from the PyUFuncGenericFunction for the corresponding
type.

int ntypes

the number of datatypes supported by this function. For datatypes that are not directly supported, a
coercion will be performed if possible safely, otherwise an error will be reported.

int nranks

unused.

int attributes

unused.

char *name

the name of this function (not the same as the dictionary label for this function object, but it is usually
set to the same string). It is printed when __repr__ is called for this object, defaults to "?" if set
to NULL.

char *types

an array of supported types for this function object. I'm not sure why but each supported datatype
(PyArray_FLOAT, etc.) is entered as many times as there are arguments for this function. (nargs)

int check_return

Usually best to set to 1. If this is non-zero then returned matrices will be cleaned up so that rank-0
arrays will be returned as python scalars. Also, if non-zero, then any math error that sets the errno
global variable will cause an appropriate Python exception to be raised.
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UfuncObject C API

There are currently 15 pointers in the C-API array for the ufuncobject which is loaded by import_ufunc().
The macros implemented by this API, available by including the file ufuncobject.h,' are given below. The
only function normally called by user code is the ufuncobject creation function
PyUFunc_FromFuncAndData. Some of the other functions can be used as elements of an array to be passed
to this creation function.

int PyUFunc_Check(op)

returns 1 if op is a ufunc object otherwise returns 0.

PyObject *PyUFunc_FromFuncAndData(functions, data, types, ntypes, nin, 
nout, identity, name, check_return)

returns the ufunc object given its parameters. This is the most important function call. It requires de-
fining three arrays to be passed as parameters: functions, data, and types. The arguments to
be passed are:

functions

an array of functions of type PyUFuncGenericFunction, there should be one function for
each supported datatype. The functions should be in order so that datatypes listed toward the be-
ginning of the array could be cast as datatypes listed toward the end.

data

an array of pointers to void* the same size as the functions array and in the same datatype order.
Each element of this array is the actual underlying math function (recast to a void *) that will
be called from one of the PyUFuncGenericFunctions. It will operate on each element of
the input NumPy arrayobject(s) and return its element-by-element result in the output
NumPy arrayobject(s). There is one function call for each datatype supported, (though functions
can be repeated if you handle the typecasting appropriately with the PyUFuncGenericFunc-
tion).

types

an array of PyArray_Types. The size of this array should be (nin+nout) times the size of
one of the previous two arrays. There should be nin+nout copies of PyArray_XXXXX for
each datatype explicitly supported. (Remember datatypes not explicitly supported will still be ac-
cepted as input arguments to the ufunc if they can be cast safely to a supported type.) 

ntypes

the number of supported types for this ufunc.

nin

the number of input arguments

nout

the number of output arguments

identity

PyUFunc_One, PyUFunc_Zero, or PyUFunc_None, depending on the desired value for the
identity. This is only relevant for functions that take two input arguments and return one output
argument. If not relevant use PyUFunc_None.

name

the name of this ufuncobject for use in the __repr__ method.

check_return

the desired value for check_return for this ufuncobject.
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int PyUFunc_GenericFunction(self,args,mps)

allows calling the ufunc from user C routine. It returns 0 on success and -1 on any failures. This is
the core of what happens when a ufunc is called from Python. Its arguments are:

self

the ufunc object to be called. INPUT

args

a Python tuple object containing the input arguments to the ufunc (should be Python sequence
objects). INPUT

mps

an array of pointers to PyArrayObjects for the input and output arguments to this function. The
input NumPy arrays are elements mps[0]...mps[self->nin-1]. The output NumPy ar-
rays are elements mps[self->nin]...mps[self->nargs-1]. OUTPUT

The following are all functions of type PyUFuncGenericFunction and are suitable for use in the func-
tions argument passed to PyUFunc_FromFuncAndData:

PyUFunc_f_f_As_d_d

for a unary function that takes a double input and returns a double output as a ufunc that takes
PyArray_FLOAT input and returns PyArray_FLOAT output. 

PyUFunc_d_d

for a using a unary function that takes a double input and returns a double output as a ufunc that
takes PyArray_DOUBLE input and returns PyArray_DOUBLE output.

PyUFunc_F_F_As_D_D

for a unary function that takes a Py_complex input and returns a Py_complex output as a ufunc
that takes PyArray_CFLOAT input and returns PyArray_CFLOAT output.

PyUFunc_D_D

for a unary function that takes a Py_complex input and returns a Py_complex output as a ufunc
that takes PyArray_CFLOAT input and returns PyArray_CFLOAT output.

PyUFunc_O_O

for a unary function that takes a Py_Object * input and returns a Py_Object * output as a
ufunc that takes PyArray_OBJECT input and returns PyArray_OBJECT output

PyUFunc_ff_f_As_dd_d

for a binary function that takes two double inputs and returns one double output as a ufunc that
takes PyArray_FLOAT input and returns PyArray_FLOAT output.

PyUFunc_dd_d

for a binary function that takes two double inputs and returns one double output as a ufunc that
takes PyArray_DOUBLE input and returns PyArray_DOUBLE output.

PyUFunc_FF_F_As_DD_D

for a binary function that takes two Py_complex inputs and returns a Py_complex output as a
ufunc that takes PyArray_CFLOAT input and returns PyArray_CFLOAT output.

PyUFunc_DD_D

for a binary function that takes two Py_complex inputs and returns a Py_complex output as a
ufunc that takes PyArray_CFLOAT input and returns PyArray_CFLOAT output 
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PyUFunc_OO_O

for a unary function that takes two Py_Object * input and returns a Py_Object * output as a
ufunc that takes PyArray_OBJECT input and returns PyArray_OBJECT output

PyUFunc_O_O_method

for a unary function that takes a Py_Object * input and returns a Py_Object * output and is
pointed to by a Python method as a ufunc that takes PyArray_OBJECT input and returns
PyArray_OBJECT output

PyArrayMap

an exported API that was apparently considered but never implemented probably because the func-
tionality is already available with Python's map function. 
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14. Glossary

This section will define a few of the technical words used throughout this document.  [Please let us know of any
additions to this list which you feel would be helpful -- the authors]

typecode: a single character describing the format of the data stored in an array.  For example, ’b’ refers to
unsigned byte-sized integers (0-255).

ufunc / universal function: a ufunc is a callable object which performs operations on all of the elements of
its arguments, which can be lists, tuples, or arrays.  Many ufuncs are defined in the umath module.

array / multiarray: an array refers to the Python object type defined by the NumPy extensions to store and
manipulate numbers efficiently.

UserArray: The UserArray module defines a UserArray class which should be subclassed by users wishing
to have classes which behave similarly to the array object type.

Matrix: The Matrix module defines a subclass Matrix of the UserArray class which is specialized for linear
algebra matrices.  Most notably, it overrides the multiplication operator on Matrix instances to perform ma-
trix multiplication instead of element-wise multiplication.

rank: the rank of an array is the number of dimensions it has, or the number of integers in its shape tuple.

shape: array objects have an attribute called shape which is necessarily a tuple.  An array with an empty tu-
ple shape is treated like a scalar (it holds one element).
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PART II: Optional Packages

This part contains descriptions of the packages that are included with the distribution but
which are not necessary for using Numeric arrays. The packages are for the most part in
the Packages subdirectory of the source distribution, and can be installed anywhere in the
Python module search path. Each has its own “setup.py” to use to build and install the
package.

For historical reasons, some of these packages are currently installed inside the Numeric
package rather than on their own. We hope to remedy this in the future.

The subdirectory Packages contains directories, each of which contains its own installation script setup.py. As
with the main directory, these packages are generally compiled and installed using the command 

python setup.py install

The Makefile in the main directory will do this for all the packages provided. 

In addition, many people make available libraries that use Numeric. At the moment a centralized reference for
these does not exist, but they are usually announced on the discussion list; also check the project web page.

Table 5: Descriptions of the Optional Packages

Package 
Name

Description Reference

FFT Fast Fourier Transforms “FFT Reference” on pag e81

LinearAlgebra Basic linear algebra “LinearAlgebra Reference” on 
page 84

RandomArray Arrays of random numbers. “RandomArray Reference” on 
page 87

RNG Generators for independent streams of random 
numbers from various distributions and arrays 
of same.

“Independent Random Streams” on 
page 92

MA Masked arrays, that is, arrays that have miss-
ing or invalid entries.

“Masked Arrays” on page 97
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License and disclaimer for packages MA, RNG, Properties

Packages MA and RNG were written by Paul Dubois, LLNL. Package RNG was written by Konrad Hinsen after
modifying an earlier package UNRG by Paul Dubois and Fred Fritsch.

Copyright (c) 1999, 2000. The Regents of the University of California. All rights reserved. 

Permission to use, copy, modify, and distribute this software for any purpose without fee is hereby granted, pro-
vided that this entire notice is included in all copies of any software which is or includes a copy or modification
of this software and in all copies of the supporting documentation for such software.

This work was produced at the University of California, Lawrence Livermore National Laboratory under con-
tract no. W-7405-ENG-48 between the U.S. Department of Energy and The Regents of the University of Cali-
fornia for the operation of UC LLNL. 

DISCLAIMER

This software was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government nor the University of California nor any of their employees, makes any
warranty, express or implied, or assumes any liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately-owned rights. Reference herein to any specific commercial products, process, or service by
trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or the University of California. The views and
opinions of authors expressed herein do not necessarily state or reflect those of the United States Government
or the University of California, and shall not be used for advertising or product endorsement purposes.

Properties Module defined is PropertiedClasses. Proper-
tiedClasses.PropertiedClass is amix-in class 
for defining parameterless functions that act 
like attributes.

“Properties Reference” on page 94

Table 5: Descriptions of the Optional Packages

Package 
Name

Description Reference
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15. FFT Reference

The FFT.py module provides a simple interface to the FFTPACK FORTRAN library,
which is a powerful standard library for doing fast Fourier transforms of real and complex
data sets, or the C fftpack library, which is algorithmically based on FFTPACK and
provides a compatible interface.  On some platforms, optimized version of one of these
libraries may be available, and can be used to provide optimal performance (see
“Compilation Notes” on page 83).

Python Interface

The Python user imports the FFT module, which provides a set of utility functions which provide access to the
most commonly used FFT routines, and allows the specification of which axes (dimensions) of the input arrays
are to be used for the FFT’s.  These routines are:

fft(data, n=None, axis=-1)

Performs a n-point discrete Fourier transform of the array data.  n defaults to the size of data.  It is most efficient
for n a power of two.   If n is larger than data, then data will be zero-padded to make up the difference. If n
is smaller than data, then data will be aliased to reduce its size. This also stores a cache of working memory
for different sizes of fft's, so you could theoretically run into memory problems if you call this too many times
with too many different n's.

The FFT is performed along the axis indicated by the axis argument, which defaults to be the last dimension
of data.

The format of the returned array is a complex array of the same shape as data, where the first element in the
result array contains the DC (steady-state) value of the FFT, and where each successive ...XXX

Example of use:

>>> print fft(array((1,0,1,0,1,0,1,0))+ 10).real
[ 84.   0.   0.   0.   4.   0.   0.   0.]
>>> print fft(array((0,1,0,1,0,1,0,1))+ 10).real
[ 84.   0.   0.   0.  -4.   0.   0.   0.]
>>> print fft(array((0,1,0,0,0,1,0,0))+ 10).real
[ 82.   0.   0.   0.  -2.   0.   0.   0.]

inverse_fft(data, n=None, axis=-1)

Will return the n point inverse discrete Fourier transform of data. n defaults to the length of data. This is
most efficient for n a power of two. If n is larger than data, then data will be zero-padded to make up the
difference. If n is smaller than data, then data will be aliased to reduce its size. This also stores a cache of
working memory for different sizes of FFT’s, so you could theoretically run into memory problems if you call
this too many times with too many different n's. 

real_fft(data, n=None, axis=-1)

Will return the n point discrete Fourier transform of the real valued array data. n defaults to the length of da-
ta. This is most efficient for n a power of two. The returned array will be one half of the symmetric complex
transform of the real array. 
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>>> x = cos(arange(30.0)/30.0*2*pi)
>>> print real_fft(x)
[ -1.        +0.j          13.69406641+2.91076367j
       -0.91354546-0.40673664j  -0.80901699-0.58778525j
       -0.66913061-0.74314483j  -0.5       -0.8660254j
       -0.30901699-0.95105652j  -0.10452846-0.9945219j
        0.10452846-0.9945219j    0.30901699-0.95105652j
        0.5       -0.8660254j    0.66913061-0.74314483j
        0.80901699-0.58778525j   0.91354546-0.40673664j
        0.9781476 -0.20791169j   1.        +0.j        ]

inverse_real_fft(data, n=None, axis=-1)

Will return the inverse FFT of the real valued array data.

fft2d(data, s=None, axes=(-2,-1))

Will return the 2-dimensional FFT of the array data.

real_fft2d(data, s=None, axes=(-2,-1))

Will return the 2d FFT of the real valued array data. 

C API

The interface to the FFTPACK library is performed via the fftpackmodule module, which is responsible for
making sure that the arrays sent to the FFTPACK routines are in the right format (contiguous memory locations,
right numerical storage format, etc).  It provides interfaces to the following FFTPACK routines, which are also
the names of the Python functions:

• cffti(i)

• cfftf(data, savearea)

• cfftb(data, savearea)

• rffti(i)

• rfftf(data, savearea)

• rfftb(data, savearea)

The routines which start with c expect arrays of complex numbers, the routines which start with r expect real
numbers only. The routines which end with i are the initalization functions, those which end with f perform
the forward FFTs and those which end with b perform the backwards FFTs.

The initialization functions require a single integer argument corresponding to the size of the dataset, and re-
turns a work array. The forward and backwards FFTs require two array arguments -- the first is the data array,
the second is the work array returned by the initialization function. They return arrays corresponding to the co-
efficients of the FFT, with the first element in the returned array corresponding to the DC component, the sec-
ond one to the first fundamental, etc.The length of the returned array is 1 + half the length of the input array in
the case of real FFTs, and the same size as the input array in the case of complex data.

>>> x = cos(arange(30.0)/30.0*2*pi)
>>> w = rffti(30)
>>> f = rfftf(x, w)
>>> f[0]
(-1+0j)
>>> f[1]
(13.6940664103+2.91076367145j)
>>> f[2]
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(-0.913545457643-0.406736643076j)

Compilation Notes

On some platforms, precompiled optimized versions of the FFTPACK library are preinstalled on the operating
system, and the compilation procedure needs to be modified to force the fftpackmodule file to be linked against
those rather than the fftpacklite.c file which is shipped with NumPy.
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16. LinearAlgebra Reference

The LinearAlgebra.py module provides a simple interface to the low-level linear algebra
routines provided by either the LAPACK FORTRAN library or the compatible lapack_lite
C library.

Python Interface

solve_linear_equations(a, b)

This function solves a system of linear equations with a square non-singular matrix a and a right-hand-side vec-
tor b. Several right-hand-side vectors can be treated simultaneously by making b a two-dimensional array (i.e.
a sequence of vectors). The function inverse(a) calculates the inverse of the square non-singular matrix a by
calling solve_linear_equations(a, b) with a suitable b. 

inverse(a)

This function returns the inverse of the specified matrix a which must be square and non-singular. To within
floating point precision, it should always be true that:

matrixmultiply(a, inverse(a)) == identity(len(a))

To test this claim, one can do e.g.:

>>> a = reshape(arange(25.0), (5,5)) + identity(5)
>>> print a
[[  1.   1.   2.   3.   4.]
 [  5.   7.   7.   8.   9.]
 [ 10.  11.  13.  13.  14.]
 [ 15.  16.  17.  19.  19.]
 [ 20.  21.  22.  23.  25.]]
>>> inv_a = inverse(a)
>>> print inv_a
[[ 0.20634921 -0.52380952 -0.25396825  0.01587302  0.28571429]
 [-0.5026455   0.63492063 -0.22751323 -0.08994709  0.04761905]
 [-0.21164021 -0.20634921  0.7989418  -0.1957672  -0.19047619]
 [ 0.07936508 -0.04761905 -0.17460317  0.6984127  -0.42857143]
 [ 0.37037037  0.11111111 -0.14814815 -0.40740741  0.33333333]]
>>> # Verify the inverse by printing the largest absolute element
... # of a * a^{-1} - identity(5)
... print "Inversion error:", \
... maximum.reduce(fabs(ravel(dot(a, inv_a)-identity(5))))
Inversion error: 2.6645352591e-015

eigenvalues(a)

This function returns the eigenvalues of the square matrix a. 

>>> print a
[[ 1.  0.  0.  0.  0.]
 [ 0.  2.  0.  0.  1.]
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 [ 0.  0.  3.  0.  0.]
 [ 0.  0.  0.  4.  0.]
 [ 0.  0.  0.  0.  1.]]
>>> print eigenvalues(a)
[ 1.  2.  3.  4.  1.]

eigenvectors(a)

This function returns both the eigenvalues and the eigenvectors, the latter as a two-dimensional array (i.e. a se-
quence of vectors).

>>> print a
[[ 1.  0.  0.  0.  0.]
 [ 0.  2.  0.  0.  1.]
 [ 0.  0.  3.  0.  0.]
 [ 0.  0.  0.  4.  0.]
 [ 0.  0.  0.  0.  1.]]
>>> evalues, evectors = eigenvectors(a)
>>> print evalues
[ 1.  2.  3.  4.  1.]
>>> print evectors
[[ 1.          0.          0.          0.          0.        ]
 [ 0.          1.          0.          0.          0.        ]
 [ 0.          0.          1.          0.          0.        ]
 [ 0.          0.          0.          1.          0.        ]
 [ 0.         -0.70710678  0.          0.          0.70710678]]

singular_value_decomposition(a, full_matrices=0)

This function returns three arrays V, S, and WT whose matrix product is the original matrix a. V and WT are
unitary matrices (rank-2 arrays), whereas S is the vector (rank-1 array) of diagonal elements of the singular-
value matrix. This function is mainly used to check whether (and in what way) a matrix is ill-conditioned.

generalized_inverse(a, rcond=1e-10)

This function returns the generalized inverse (also known as pseudo-inverse or Moore-Penrose-inverse) of the
matrix a. It has numerous applications related to linear equations and least-squares problems.

determinant(a)

This function returns the determinant of the square matrix a.

linear_least_squares(a, b, rcond=e-10)

This function returns the least-squares solution of an overdetermined system of linear equations. An optional
third argument indicates the cutoff for the range of singular values (defaults to 10-10). There are four return
values: the least-squares solution itself, the sum of the squared residuals (i.e. the quantity minimized by the so-
lution), the rank of the matrix a, and the singular values of a in descending order.

cholesky_decomposition(a)

This function returns a lower triangular matrix L which, when multiplied by its transpose yields the original ma-
trix a. a must be square, Hermitian and positive definite.  L is often referred to as the Cholesky lower-triangular
square-root of a.

Heigenvalues(a)

returns the (real positive) eigenvalues of the square, Hermitian positive definite matrix a.
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Heigenvectors(a)

returns both the (real positive) eigenvalues and the eigenvectors of a square, Hermitian positive definite matrix
a. The eigenvectors are returned in an (orthornormal) two-dimensional matrix.

Compilation Notes

On some platforms, precompiled optimized versions of the LAPACK and BLAS libraries are preinstalled on
the operating system, and the setup procedure needs to be modified to force the lapackmodule.c file to be linked
against those rather than the lapack_lite library.

A frequent request is that somehow the maintainers of Numerical Python invent a procedure which will auto-
matically find and use the “best” available versions of these libraries. This is not going to happen.
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17. RandomArray Reference

The RandomArray.py module (in conjunction with the ranlibmodule.c file) provides a
high-level interface to the ranlib module, which provides a good quality C implementation
of a random-number generator.

Python Interface

seed(x=0, y=0)

The seed() function takes two integers and sets the two seeds of the random number generator to those values.
If the default values of 0 are used for both x and y, then a seed is generated from the current time, providing a
pseudo-random seed.

get_seed()

The get_seed() function returns the two seeds used by the current random-number generator. It is most of-
ten used to find out what seeds the seed() function chose at the last iteration. [thread-safety issue?]

random(shape=ReturnFloat)

The random() function takes a shape, and returns an array of double-precision floatings point numbers be-
tween 0.0 and 1.0. Neither 0.0 nor 1.0 is ever returned by this function. If no argument is specified, the function
returns a single floating point number (not an array). The array is filled from the generator following the canon-
ical array organization (see discussion of the .flat attribute)

uniform(minimum, maximum, shape=ReturnFloat)

The uniform() function returns an array of the specified shape and containing double-precision floating
point random numbers strictly between minimum and maximum. If no shape is specified, a single number is
returned.

randint(minimum, maximum, shape=ReturnFloat)

The randint() function returns an array of the specified shape and containing random (standard) integers
greater than or equal to minimum and strictly less than maximum. If no shape is specified, a single number is
returned.

permutation(n)

The permutation() function returns an array of the integers between 0 and n-1, in an array of shape (n,),
and with its elements randomly permuted.

An example use of the RandomArray module (exact output will be different each time!):

>>> from RandomArray import *
>>> seed() # Set seed based on current time
>>> print get_seed() # Find out what seeds were used
(897800491, 192000)
>>> print random()
0.0528018975065
>>> print random((5,2))
[[ 0.14833829  0.99031458]
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 [ 0.7526806   0.09601787]
 [ 0.1895229   0.97674777]
 [ 0.46134511  0.25420982]
 [ 0.66132009  0.24864472]]
>>> print uniform(-1,1,(10,))
[ 0.72168852 -0.75374185 -0.73590945  0.50488248 -0.74462822  0.09293685
      -0.65898308  0.9718067  -0.03252475  0.99611011]
>>> print randint(0,100, (12,))
[28  5 96 19  1 32 69 40 56 69 53 44]
>>> print permutation(10)
[4 2 8 9 1 7 3 6 5 0]
>>> seed(897800491, 192000)# resetting the same seeds
>>> print random() # yields the same numbers
0.0528018975065

Floating point random arrays

standard_normal (shape=ReturnFloat) 

The standard_normal () function returns an array of the specified shape that contains double precision floating
point numbers normally (Gaussian) distributed with mean zero and variance and standard deviation one. If no
shape is specified, a single number is returned. 

normal (mean, stddev, shape=ReturnFloat) 

The normal () function returns an array of the specified shape that contains double precision floating point num-
bers normally distributed with the specified mean and standard deviation. If no shape is specified, a single num-
ber is returned. 

multivariate_normal (mean, covariance) or 
multivariate_normal (mean, covariance, leadingAxesShape) 

The multivariate_normal () function takes a one dimensional array argument mean and a two dimensional array
argument covariance. Suppose the shape of mean is (n,). Then the shape of covariance must be (n,n). The
multivariate_normal () function returns a double precision floating point array. The effect of the leadin-
gAxesShape parameter is: 

• If no leadingAxesShape is specified, then an array with shape (n,) is returned containing a vector of numbers
with a multivariate normal distribution with the specified mean and covariance.

• If leadingAxesShape is specified, then an array of such vectors is returned. The shape of the output is lead-
ingAxesShape.append ((n,)). The leading indices into the output array select a multivariate normal from the
array. The final index selects one number from within the multivariate normal.

In either case, the behavior of multivariate_normal () is undefined if covariance is not symmetric and positive
definite. 

exponential (mean, shape=ReturnFloat) 

The exponential () function returns an array of the specified shape that contains double precision floating point
numbers exponentially distributed with the specified mean. If no shape is specified, a single number is returned. 

beta (a, b, shape=ReturnFloat) 

The beta () function returns an array of the specified shape that contains double precision floating point num-
bers beta distributed with alpha parameter a and beta parameter b. If no shape is specified, a single number is
returned. 
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gamma (a, r, shape=ReturnFloat) 

The gamma () function returns an array of the specified shape that contains double precision floating point num-
bers beta distributed with location parameter a and distribution shape parameter r. If no shape is specified, a sin-
gle number is returned. 

chi_square (df, shape=ReturnFloat) 

The chi_square() function returns an array of the specified shape that contains double precision floating point
numbers with the chi square distribution with df degrees of freedom. If no shape is specified, a single number
is returned. 

noncentral_chi_square (df, nonc, shape=ReturnFloat) 

The noncentral_chi_square() function returns an array of the specified shape that contains double precision
floating point numbers with the chi square distribution with df degrees of freedom and noncentrality parameter
nconc. If no shape is specified, a single number is returned. 

F (dfn, dfd, shape=ReturnFloat) 

The F () function returns an array of the specified shape that contains double precision floating point numbers
with the F distribution with dfn degrees of freedom in the numerator and dfd degrees of freedom in the denom-
inator. If no shape is specified, a single number is returned. 

noncentral_F (dfn, dfd, nconc, shape=ReturnFloat) 

The noncentral_F () function returns an array of the specified shape that contains double precision floating
point numbers with the F distribution with dfn degrees of freedom in the numerator, dfd degrees of freedom in
the denominator, and noncentrality parameter nconc. If no shape is specified, a single number is returned. 

Integer random arrays

binomial (trials, prob, shape=ReturnInt) 

The binomial () function returns an array with the specified shape that contains integer numbers with the bino-
mial distribution with trials trials and event probability prob. In other words, each value in the returned array is
the number of times an event with probability prob occurred within trials repeated trials. If no shape is speci-
fied, a single number is returned. 

negative_binomial (trials, prob, shape=ReturnInt)

The negative_binomial () function returns an array with the specified shape that contains integer numbers with
the negative binomial distribution with trials trials and event probability prob. If no shape is specified, a single
number is returned. 

poisson (mean, shape=ReturnInt) 

The poisson () function returns an array with the specified shape that contains integer numbers with the Poisson
distribution with the specified mean. If no shape is specified, a single number is returned. 

multinomial (trials, probs) or multinomial (trials, probs, leadingAxesShape) 

The multinomial () function returns an array with that contains integer numbers with the multinomial distribu-
tion with trials trials and event probabilities given in probs. probs must be a one dimensional array. There are
len(probs)+1 events. probs[i] is the probability of the i-th event for 0<=i<len(probs). The probability of event
len(probs) is 1.-Numeric.sum(prob). 
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The first form returns an integer array of shape (len(probs)+1,) containing one multinomially distributed vector.
The second form returns an array of shape (m, n, ..., len(probs)+1) where (m, n, ...) is leadingAxesShape. In this
case, each output[i,j,...,:] is an integer array of shape (len(prob)+1,) containing one multinomially distributed
vector.. 

Examples

Most of the functions in this package take zero or more distribution specific parameters plus an optional shape
parameter. The shape parameter gives the shape of the output array: 

>>> from RandomArray import * 
>>> print standard_normal() 
-0.435568600893 
>>> print standard_normal(5) 
[-1.36134553 0.78617644 -0.45038718 0.18508556 0.05941355] 
>>> print standard_normal((5,2)) 
[[ 1.33448863 -0.10125473] 
[ 0.66838062 0.24691346] 
[-0.95092064 0.94168913] 
[-0.23919107 1.89288616] 
[ 0.87651485 0.96400219]] 

>>> print normal(7., 4., (5,2)) #mean=7, std. dev.=4 
[[ 2.66997623 11.65832615] 
[ 6.73916003 6.58162862] 
[ 8.47180378 4.30354905] 
[ 1.35531998 -2.80886841] 
[ 7.07408469 11.39024973]] 

>>> print exponential(10., 5) #mean=10 
[ 18.03347754 7.11702306 9.8587961 32.49231603 28.55408891] 
>>> print beta(3.1, 9.1, 5) # alpha=3.1, beta=9.1 
[ 0.1175056 0.17504358 0.3517828 0.06965593 0.43898219] 
>>> print chi_square(7, 5) # 7 degrees of freedom (dfs) 
[ 11.99046516 3.00741053 4.72235727 6.17056274 8.50756836] 
>>> print noncentral_chi_square(7, 3, 5) # 7 dfs, noncentrality 3 
[ 18.28332138 4.07550335 16.0425396 9.51192093 9.80156231] 
>>> F(5, 7, 5) # 5 and 7 dfs 
array([ 0.24693671, 3.76726145, 0.66883826, 0.59169068, 1.90763224]) 
>>> noncentral_F(5, 7, 3., 5) # 5 and 7 dfs, noncentrality 3 
array([ 1.17992553, 0.7500126 , 0.77389943, 9.26798989, 1.35719634]) 
>>> binomial(32, .5, 5) # 32 trials, prob of an event = .5 
array([12, 20, 21, 19, 17]) 
>>> negative_binomial(32, .5, 5) # 32 trials: prob of an event = .5 
array([21, 38, 29, 32, 36])

Two functions that return generate multivariate random numbers (that is, random vectors with some known re-
lationship between the elements of each vector, defined by the distribution). They are multivariate_normal ()
and multinomial (). For these two functions, the lengths of the leading axes of the output may be specified. The
length of the last axis is determined by the length of some other parameter. 

>>> multivariate_normal([1,2], [[1,2],[2,1]], [2,3]) 
array([[[ 0.14157988, 1.46232224], 

 [-1.11820295, -0.82796288], 
 [ 1.35251635, -0.2575901 ]], 

 [[-0.61142141, 1.0230465 ], 
 [-1.08280948, -0.55567217], 
 [ 2.49873002, 3.28136372]]]) 
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>>> x = multivariate_normal([10,100], [[1,2],[2,1]], 10000) 
>>> x_mean = sum(x)/10000 
>>> print x_mean 
[ 9.98599893 100.00032416] 
>>> x_minus_mean = x - x_mean 
>>> cov = matrixmultiply(transpose(x_minus_mean), x_minus_mean) / 9999. 
>>> cov 
array([[ 2.01737122, 1.00474408], 
[ 1.00474408, 2.0009806 ]])

The a priori probabilities for a multinomial distribution must sum to one. The prior probability argument to
multinomial () doesn't give the prior probability of the last event: it is computed to be one minus the sum of the
others. 

>>> multinomial(16, [.1, .4, .2]) # prior probabilities [.1, .4, .2, .3] 
array([2, 7, 1, 6]) 
>>> multinomial(16, [.1, .4, .2], [2,3]) # output shape [2,3,4] 
array([[[ 1, 9, 1, 5], 

 [ 0, 10, 3, 3], 
 [ 4, 9, 3, 0]], 

 [[ 1, 6, 1, 8], 
 [ 3, 4, 5, 4], 
 [ 1, 5, 2, 8]]])
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18. Independent Random Streams

The RNG package provides any number of independent random number generators tied to
a distribution. Distributions include exponential, normal, and log-normal distributions, but
adding others is not difficult. Contributions of code for other distributions are welcome! 

Background

RNG was written by Konrad Hinsen based on the package URNG by Paul Dubois and Fred Fritsch of LLNL.
This package has been released for unlimited redistribution. Please see “License and disclaimer for packages
MA, RNG, Properties” on page80.

Usage

Package RNG installs two modules: RNG.RNG, and RNG.ranf. The former is a C extension that does the gen-
eration. The latter is an easy-to-use interface for a single uniform distribution.

Module RNG

������ �	
 ������ ��� ������:

������
���������, distribution=UniformDistribution(0., 1.)�

creates a new random number generator with a distribution. The random numbers produced by the generator
sample the distribution and are independent of other generators created earlier or later. Its first argument, an in-
teger, determines the initial state: 

•  < 0 ; Use the default initial seed value. 

• 0 ; Set a random value for the seed from the system clock. 

• >0 ; Set seed directly (32 bits only). 

The default distribution is a uniform distribution on [0., 1.); other distributions are obtained by supplying a sec-
ond argument which must be a distribution. Currently RNG defines the following distribution types: 

• UniformDistribution(a, b) -- a uniform distribution of numbers in the interval [a, b) 

• NormalDistribution(mu, sigma) -- a normal distribution with mean mu and standard deviation sigma 

• ExponentialDistribution(l) -- an exponential distribution of positive numbers with decay constant l. 

• LogNormalDistribution(mean, std) -- a log normal distribution with given mean and standard deviation.

Generator objects

Once a generator is created, it contains these methods:

• sample(n) will return an array of n samples from the generator.

• ranf() will return one sample from the generator.

Module ranf

Module ranf, whose main function ranf() is equivalent to the old ranf generator on Cray 1 computers, defines
these facilities.
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Attribute standard_generator is an instance of RNG.UniformDistribution(0., 1.).

ranf(): returns a random number from the standard_generator.

random_sample(*n) returns a Numeric array of samples from the standard_generator.

random_sample(n) = array of n random numbers;
random_sample(n1, n2, ...)= array of shape (n1, n2, ..)

Examples
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Here is one function from RNGdemo.py, showing a test of a normal distribution.

from Numeric import *
import RNG

def test_normal (mean, std, n=10000):
    dist = RNG.NormalDistribution(mean, std)
    rng = RNG.CreateGenerator(0, dist)
    values = rng.sample(n)
    m = sum(values)/n
    s = sqrt(sum((values-m)**2)/n)
    return (m, s)
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19. Properties Reference

The package Properties defines one module, PropertiedClasses. PropertiedClasses is a
module that defines a mix-in class PropertiedClass. Classes that inherit it appear have what
appear to be attributes that are actually read, written or deleted via functions. 

Defining a property

A property y in a class C is defined by associating the name y to functions that respond to one or more of the
three possible operations on attributes:

1. “get”, returning the result of the Python syntax x.y, where x is an instance of C, by defining a method
g(self, name);

2. “set”, performing an operation in response to the Python statement x.y = value, by defining a method s(self, 
name, value); and,

3. “delete”, performing an operation in response to the Python statement del x.y, by defining a method d(self, 
name).

The association is performed by calls to PropertiedClasses.set_property as explained below. We refer to these
functions as the “handlers” for the property. In defining a property, you can specify one, two, or three of the
functions above. If you do not specify an attribute, the normal attribute fetch mechanism can be used (which
means that self.__dict__[name] is returned, set, or deleted, respectively). 

Additionally, set_property allows you to use a short-hand method of arranging for the attribute to be unwrite-
able and/or undeleteable via the normal mechanisms.

Evading the mechanism

There are two ways to avoid the property mechanism, which you may want to do, for example, to set a value to
a “unwriteable” attribute.

First, PropertiedClass defines a method is_internal_attribute (self, name) which may be redefined in a child.
The default version is to true if the name begins with an underscore. Names for which 
is_internal_attribute(self, name) is true are always treated as names to which the property mechanism does not
apply, and no attempt is made to locate “handlers” for them.

Secondly, methods _basic_get (self, name), _basic_set (self, name, value), and _basic_del (self, name) are
available to perform the “normal” get, set, and delete functions via the instance dictionary, self.__dict__.

Creating the class

In defining a class that will have properties, all you have to do is inherit from PropertiedClass. You also need
to exercise great caution in overriding any of the three special attributes related to attribute handling,
__getattr__, __setattr__, and __delattr__, since PropertiedClass defines these in order to do its job. The property
behavior can be lost if any child’s versions do not call the parent versions of these routines.

In writing the methods of your class, be aware that the properties you define will be active even in the initial-
ization routine for the class. You may in particular need to use _basic_set to create the initial state.
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Setting a property

The module function set_property should be called immediately after the class definition to set properties:

set_property (C, name, actg=None, acts=None, actd=None, 
nowrite=None, nodelete=None)

"""Set attribute handlers for  name to methods actg, acts, actd
       None means no change for that action.
       nowrite = 1 prevents setting this attribute.
           nowrite defaults to 0.
       nodelete = 1 prevents deleting this attribute.
           nodelete defaults to 1 unless actd given.
       if nowrite and nodelete is None: nodelete = 1
"""

C is the class, name is the name of the property to define, and actg, acts, and actd are unbound methods of class
C having signatures actg (self, name), acts (self, name, value), and actd (self, name). The specifying of nowrite
= 1 causes acts to be the method PropertiedClass._write_disallowed, a function that will raise an AttributeError
if invoked. If nodelete is 1, actd is set to PropertiedClass._delete_disallowed, a function that will raise an At-
tributeError if invoked. It is an error to specify nowrite or nodelete at the same time you specify acts or actd re-
spectively. You can use the routine _basic_get for actg, _basic_set for acts, or _basic_del for actd, if you wish.

Example:

In this example, three properties are defined: a is a normal attribute but it cannot be deleted; b, an undeleteable
property which gets and sets a hidden value _b; and c, an undeleteable attribute whose value is checked on as-
signment to make sure it is greater than zero. The attribute _d is unaffected by Properties since its name starts
with an underscore.

import PropertiedClasses
class C (PropertiedClasses.PropertiedClass):

def __init__ (self):
self.a = 1
self._b = 2
self.c = 3
self._d = 4

def assign_with_validate (self, name, value):
“Checks that name is positive before assignment.”
if c <= 0: raise ValueError, ‘cannot assign negative value’
self._basic_set (name, value)

def _bget (self, name):
return self._b

def _bset (self, name, value):
self._b = value

PropertiedClasses.set_property (C, ‘a’, nodelete=1)
PropertiedClasses.set_property (C, ‘b’, C._bget, C._bset)
PropertiedClasses.set_property (C, ‘c’, acts = C.assign_with_validate)

Note that as written the method assign_with_validate will only be called 
internally with the name ‘c’. If we latter add another attribute c2 that 
we also wish to validate with this method, we can use the same method as 
acts for it.
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20. Masked Arrays

Masked arrays are arrays that may have missing or invalid entries. Module MA provides a
nearly work-alike replacement for Numeric that supports data arrays with masks.

Required Packages

Properties

MA uses Numeric and the optional package Properties. See “Properties Reference” on pa ge94.

What is a masked array?

Masked arrays are arrays that may have missing or invalid entries. Module MA provides a work-alike replace-
ment for Numeric that supports data arrays with masks. A mask is either None or an array of ones and zeros,
that determines for each element of the masked array whether or not it contains an invalid entry. The package
assures that invalid entries are not used in calculations. 

A particular element is said to be masked (invalid) if the mask is not None and the corresponding element of the
mask is 1; otherwise it is unmasked (valid). 

This package was written by Paul F. Dubois at Lawrence Livermore National Laboratory. Please see the legal
notice in the software and on “License and disclaimer for packages MA, RNG, Properties” on page80.

Installing and using MA

MA is one of the optional Packages and installing it requires a separate step as explained in the Numeric
README. To install just the MA package using Distutils, in the MA top directory enter:

python setup.py install

Use MA as a replacement for Numeric:

from MA import *
x = array([1, 2, 3])

To create an array with the second element invalid, we would do:

y = array([1, 2, 3], mask = [0, 1, 0])
To create a masked array where all values “near” 1.e20 are invalid, we can do:

z = masked_values ([1.0, 1.e20, 3.0, 4.0], 1.e20)
For a complete discussion of creation methods for masked arrays please see “Constructing masked arrays” on
page 101.

The Numeric module is an attribute in MA, so to execute a method foo from Numeric, you can reference it as
Numeric.foo(...).

Usually people use both MA and Numeric this way, but of course you can always fully-qualify the names:

import MA
x = MA.array([1, 2, 3])
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The principal feature of module MA is class MaskedArray, the class whose instances are returned by the array
constructors and most functions in module MA. We will discuss this class first, and later cover the attributes
and functions in module MA. For now suffice it to say that among the attributes of the module are the constants
from module Numeric including those for declaring typecodes, NewAxis, and the mathematical constants such
as pi and e. An additional typecode, MaskType, is the typecode used for masks.

Class MaskedArray

In Module MA, an array is an instance of class MaskedArray, which is defined in the module MA. An instance
of class MaskedArray can be thought of as containing the following parts:

• An array of data, of any shape;

• A mask of ones and zeros of the same shape as the data; and,

• A “fill value” -- this is a value that may be used to replace the invalid entries in order to return a plain Nu-
meric array. The chief method that does this is the method filled discussed below.

We will use the terms “invalid value” and “invalid entry” to refer to the data value at a place corresponding to
a mask value of 1. It should be emphasized that the invalid values are never used in any computation, and that
the fill value is not used for any computational purpose. When an instance x of class MaskedArray is converted
to its string representation, it is the result returned by filled (x) that is converted to a string.

Attributes of masked arrays

flat: (deprecated) returns the masked array as one-dimensional. This is provided for compatibility with Numer-
ic. ravel (x) is preferred. It can be assigned to: x.flat = value will change the values of x.

real: returns the real part of the array if complex. It can be assigned to: x.real = value will change the real parts
of x.

imaginary: returns the imaginary part of the array if complex. It can be assigned to: x.imaginary = value will
change the imaginary parts of x.

shape: The shape of a masked array can be accessed or changed by using the special attribute shape, as with
Numerical arrays. It can be assigned to: x.shape = newshape will change the shape of x. The new shape describe
the same total number of elements.

shared_data: This read-only flag if true indicates that the masked array shared a reference with the original
data used to construct it at the time of construction. Changes to the original array will affect the masked array.
(This is not the default behavior; see “Copying or not?” on pa ge103.) This flag is informational only.

shared_mask: This read-only flag if true indicates that the masked array currently shares a reference to the
mask used to create it. Unlike shared_data, this flag may change as the result of modifying the array contents,
as the mask uses copy on write semantics if it is shared.
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Methods on masked arrays. 

Table 6: Methods on masked arrays; attributes, constructors and operations 
discussed separately.

Method Description Sample syntax

__array__ A special method allows conversion to a 
Numeric array if no element is actually 
masked. If there is a masked element, an 
MAError exception is thrown. Many 
Numeric functions, such as Numeric.sqrt, 
will attempt this conversion on their argu-
ments. See also module method filled.

yn = Numeric.array(x)

astype (typecode) return self as array of given type. y = x.astype (Float32)

byte_swapped() returns the raw Numeric data byte-swapped; 
included for consistency with Numeric but 
probably meaningless.

yn = x.byte_swapped()

compressed () return an array of the valid elements. Result 
is one-dimensional.

y = x.compressed()

count(axis=None) count the number of non-masked elements 
in the array, if axis is None. Otherwise 
return an array of such counts along the axis 
given.

n=x.count()
y=x.count(0)

fill_value () Get the current fill value. v = x.fill_value ()

filled (fill_value=None) Returns a Numeric array with the masked 
values replaced by the fill value. See also 
the description of module method filled.

yn = x.filled()

ids () Return the ids of the data and mask areas id1, id2 = x.ids ()

iscontiguous () Is the data area contiguous? See Numeric 
manual.

if x.iscontiguous ()

itemsize() size of individual data items in bytes n = x.itemsize()

mask () Return the data mask, or None. m = x.mask ()

put (values) Set the value at each non-masked entry to 
the corresponding entry in values. The mask 
is unchanged. See also module method put.

x.put (values)

putmask (values) Eliminate any masked values by setting the 
value at each masked entry to the corre-
sponding entry in values. Set the mask to 
None.

x.putmask(values)
assert getmask(x) is None

raw_data () A reference to the non-filled data; portions 
may be meaningless. Expert use only.

d = x.raw_data ()

savespace (v) Set the spacesaver attribute to v. x.savespace (1)
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set_fill_value () Set the fill value to v. Omit v to restore 
default.

x.set_fill_value (1.e21)

set_shape (args...) shape (n, m, ...) sets the shape. x.set_shape (3, 12)

size (axis) Number of elements in array, or in a partic-
ular axis.

totalsize = x.size ()
col_len = x.size (1)

spacesaver() Query the spacesave flag. flag = x.spacesaver()

tolist(fill_value=None) Return the Python list 
self.filled(fill_value).tolist(); note that 
masked values are filled.

alist=x.tolist()

tostring(fill_value=Non
e)

Return the string 
self.filled(fill_value).tostring()

s = x.tostring()

typecode () Return the type of the data. See module Pre-
cision.

z = x.typecode()

unmask() Replaces the mask by None if possible. 
Subsequent operations may be faster if the 
array previously had an all-zero mask.

x.unmask()

unshare_mask() If shared_mask is currently true, replaces 
the reference to it with a copy.

x.unshare_mask()

Table 6: Methods on masked arrays; attributes, constructors and operations 
discussed separately.

Method Description Sample syntax
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Constructing masked arrays

1. array (data, typecode = None, copy = 1, savespace = 0, mask = None, fill_value = None) 
Creates a masked array with the given data and mask. The name array is simply an alias for the class
name, MaskedArray, The fill value is set to fill_value, and the savespace flag is applied. If data is a
MaskedArray, its mask, typecode, spacesaver flag, and fill value will be used unless specifically specified
by one of the remaining arguments. In particular, if d is a masked array, array(d, copy=0) is d. 

2. masked_array (data, mask = None, fill_value = None)
This is an easier-to-use version of array, for the common case of typecode = None, copy = 0. When data 
is newly-created this function can be used to make it a masked array without copying the data if data is 
already a Numeric array.

3. masked_values (data, value, rtol=1.e-5, atol=1.e-8, typecode = None, copy = 1, savespace = 0) 
Constructs a masked array whose mask is set at those places where 
abs (data - value) < atol + rtol * abs (data). 
That is a careful way of saying that those elements of the data that have value = value (to within a toler-
ance) are to be treated as invalid. If data is not of a floating point type, calls masked_object instead.

4. masked_object (data, value, copy=1, savespace=0) 
Creates a masked array with those entries marked invalid that are equal to value. Again, copy and 
savespace are passed on to the Numeric array constructor.

5. asarray(data, typecode=None)
This is the same as array(data, typecode, copy=0). This is a short way of ensuring that something is an 
instance of MaskedArray of a given type before proceeding, as in 
data = asarray(data). 

If data already is a masked array and typecode is None then the return value is data; nothing is copied in 
that case.

6. masked_where (condition, data, copy=1) 
Creates a masked array whose shape is that of condition, whose values are those of data, and which is 
masked where elements of condition are true.

7. masked is a module constant that represents a scalar masked value. For example, if x is a masked array 
and a particular location such as x[1] is masked, the quantity x[1] will be this special constant. This special 
element is discussed more fully in “The constant masked” on page107.

The following additional constructors are provided for convenience.

• masked_greater (data, value, copy=1) is equivalent to masked_where (greater(data, value), data)). Sim-
ilarly, masked_greater_equal, masked_equal, masked_not_equal, masked_less, masked_less_equal
are called in the same way with the obvious meanings. Note that for floating point data, masked_values is
preferable to masked_equal in most cases.

• masked_inside (data, v1, v2, copy=1) creates an array with values in the closed interval [v1, v2] masked.
v1 and v2 may be in either order.

• masked_outside (data, v1, v2, copy=1) creates an array with values outside the closed interval [v1, v2]
masked. v1 and v2 may be in either order.

On entry to any of these constructors, data must be any object which the Numeric package can accept to create
an array (with the desired typecode, if specified). The mask if given must be None or any object that can be
turned into a Numeric array of integer type (it will be converted to typecode MaskType, if necessary), have the
same shape as data, and contain only values of 0 or 1.

If the mask is not None but its shape does not match that of data, an exception will be thrown, unless one of the
two is of length 1, in which case the scalar will be resized (using Numeric.resize) to match the other.

See “Copying or not?” on page103 for a discussion of whether or not the resulting array shares its data or its
mask with the arguments given to these constructors.
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Important Tip

filled is very important. It converts its argument to a plain Numeric array.

filled (x, value = None) returns x with any invalid locations replaced by a fill value. filled is guaranteed to return
a plain Numeric array. The argument x does not have to be a masked array or even an array, just something that
Numeric can turn into one.

• If x is not a masked array, and not a Numeric array, Numeric.array (x) is returned.

• If x is a contiguous Numeric array then x is returned. (A Numeric array is contiguous if its data storage re-
gion is layed out in column-major order; Numeric allows non-contiguous arrays to exist but they are not al-
lowed in certain operations). 

• If x is a masked array, but the mask is None, and x’s data array is contiguous, then it is returned. If the data
array is not contiguous, a (contiguous) copy of it is returned.

• If x is a masked array with an actual mask, then an array formed by replacing the invalid entries with value,
or fill_value (x) if value is None, is returned. If the fill value used is of a different type or precision than x,
the result may be of a different type or precision than x.

Note that a new array is created only if necessary to create a correctly filled, contiguous, Numeric array.

The function filled plays a central role in our design. It is the “exit” back to Numeric, and is used whenever the
invalid values must be replaced before an operation. For example, adding two masked arrays a and b is roughly:

masked_array(filled(a, 0)+filled(b, 0), mask_or(getmask(a), getmask(b))
That is, fill the invalid entries a and b with zeros, add them up, and declare any entry of the result invalid if ei-
ther a or b was invalid at that spot. The functions getmask and mask_or are discussed later.

filled also can be used to simply be certain that some expression is a contiguous Numerical array at little cost.
If its argument is a Numeric array already, it is returned without copying. 

If you are certain that a masked array x contains a mask that is None or is all zeros, you can convert it to a Nu-
meric array with the Numeric.array(x) constructor. If you turn out to be wrong, an MAError exception is raised.

fill_value (x), and the method x.fill_value() of the same name on masked arrays, returns a value suitable for fill-
ing x based on its type. If x is a masked array, then x.fill_value () results. The returned value for a given type
can be changed by assigning to these names in module MA: They should be set to scalars or one element arrays. 

default_real_fill_value = Numeric.array([1.0e20], Float32)
default_complex_fill_value = Numeric.array([1.0e20 + 0.0j], Complex32)
default_character_fill_value = masked
default_integer_fill_value = Numeric.array([0]).astype(UnsignedInt8)
default_object_fill_value = masked

The variable masked is a module variable of MA and is discussed in “The constant masked” on page 107. Call-
ing filled with a fill_value of masked sometimes produces a useful printed representation of a masked array.
The function fill_value works on any kind of object.

set_fill_value (a, fill_value) is the same as a.set_fill_value (fill_value) if a is a masked array; otherwise it does
nothing. Please note that the fill value is mostly cosmetic; it is used when it is needed to convert the masked ar-
ray to a plain Numeric array but not involved in most operations. In particular, setting the fill value to 1.e20 will
not, repeat not, cause elements of the array whose values are currently 1.e20 to be masked. For that sort of be-
havior use the masked_value constructor.

What are masks?

Masks are either None or 1-byte Numerical arrays of 1’s and 0’s. To avoid excessive performance penalties,
mask arrays are never checked to be sure that the values are 1’s and 0’s, and supplying a mask= argument to a
constructor with an illegal mask will have undefined consequences later. 
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Masks have the savespace attribute set. This attribute, discussed in the Numeric Python manual, may have sur-
prising consequences if you attempt to do any operations on them other than those supplied by this package. In
particular, do not add or multiply a quantity involving a mask. For example, if m is a mask consisting of 1080
1 values, sum(m) is 56, not 1080. Oops.

Working with masks

is_mask (m) is true if m is of a type and precision that would be allowed as the mask field of a masked array
(that is, it is an array of integers with Numeric’s typecode MaskType, or it is None). To be a legal mask, m
should contain only zeros or ones, but this is not checked.

make_mask (m, copy=0, flag=0) returns an object whose entries are equal to m and for which is_mask would
return true. If m is already a mask or None, it returns m or a copy of it. Otherwise it will attempt to make a mask,
so it will accept any sequence of integers of for m. If flag is true, make_mask returns None if its return value
otherwise would contain no true elements. To make a legal mask, m should contain only zeros or ones, but this
is not checked.

make_mask_none (s) returns a mask of all zeros of shape s (deprecated form: create_mask).

getmask (x) returns x.mask(), the mask of x, if x is a masked array, and None otherwise. Note that getmask may
return None if x is a masked array but has a mask of None. (Please see caution above about operating on the re-
sult).

getmaskarray (x) returns x.mask() if x is a masked array and has a mask that is not None; otherwise it returns
a zero mask array of the same shape as x. Unlike getmask, getmaskarray always returns an Numeric array of
typecode MaskType. (Please see caution above about operating on the result).

mask_or (m1, m2) returns an object which when used as a mask behaves like the element-wise “logical or” of
m1 and m2, where m1 and m2 are either masks or None (e.g., they are the results of calling getmask). A None
is treated as everywhere false. If both m1 and m2 are None, it returns None. If just one of them is None, it re-
turns the other. If m1 and m2 refer to the same object, a reference to that object is returned.

Operations

Masked arrays support the operators +, *, /, -, **, and unary plus and minus. The other operand can be another
masked array, a scalar, a Numeric array, or something Numeric.array() can convert to a Numeric array. The re-
sults are masked arrays.

In addition masked arrays support the in-place operators +=, -=, *=, and /=. Implementation of in-place opera-
tors differs from Numeric semantics in being more generous about converting the right-hand side to the re-
quired type: any kind or lesser type accepted via an astype conversion. In-place operators truly operate in-place
when the target is not masked. 

Copying or not?

Depending on the arguments results of constructors may or may not contain a separate copy of the data or mask
arguments. The easiest way to think about this is as follows: the given field, be it data or a mask, is required to
be a Numerical array, possibly with a given typecode, and a mask’s shape must match that of the data. If the
copy argument is zero, and the candidate array otherwise qualifies, a reference will be made instead of a copy.
If for any reason the data is unsuitable as is, an attempt will be made to make a copy that is suitable. Should that
fail, an exception will be thrown. Thus, a copy=0 argument is more of a hope than a command.

If the basic array constructor is given a masked array as the first argument, its mask, typecode, spacesaver flag,
and fill value will be used unless specifically specified by one of the remaining arguments. In particular, if d is
a masked array, array(d, copy=0) is d.

Since the default behavior for masks is to use a reference if possible, rather than a copy, which produces a size-
able time and space savings, it is especially important not to modify something you used as a mask argument to
a masked array creation routine, if it was a Numeric array of typecode MaskType.
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Behaviors

A masked array defines the conversion operators str (x), repr (x), float (x), and int (x) by applying the corre-
sponding operator to the Numeric array filled (x)

Indexing and Slicing

Indexing and slicing differ from Numeric: while generally the same, they return a copy, not a reference, when
used in an expression that produces a non-scalar result. Consider this example:

from Numeric import *
x = array([1.,2.,3.])
y = x[1:]
y[0] = 9.
print x

This will print [1., 9., 3.] since x[1:] returns a reference to a portion of x. Doing the same operation using MA, 

from MA import *
x = array([1.,2.,3.])
y = x[1:]
y[0] = 9.
print x

will print [1., 2., 3.], while y will be a separate array whose present value would be [9., 3.]. While sentiment on
the correct semantics here is divided amongst the Numeric community as a whole, it is not divided amongst the
author’s community, on whose behalf this package is written.

Indexing in assignments

Using multiple sets of square brackets on the left side of an assignment statement will not produce the desired
result:

x = array([[1,2],[3,4]])
x[1][1] = 20. # Error, does not change x
x[1,1] = 20. # Correct, changes x

The reason is that x[1] is a copy, so changing it changes that copy, not x. Always use just one single square
bracket for assignments.

Operations that produce a scalar result

If indexing or another operation on a masked array produces a scalar result, then a scalar value is returned rather
than a one-element masked array. This raises the issue of what to return if that result is masked. The answer is
that the module constant masked is returned. This constant is discussed in “The constant masked” on page 107.
While this most frequently occurs from indexing, you can also get such a result from other functions. For ex-
ample, averaging a 1-D array, all of whom’s values are invalid, would result in masked.

Assignment to elements and slices

Assignment of a normal value to a single element or slice of a masked array has the effect of clearing the mask
in those locations. In this way previously invalid elements become valid. The value being assigned is filled first,
so that you are guaranteed that all the elements on the left-hand side are now valid. 

Assignment of None to a single element or slice of a masked array has the effect of setting the mask in those
locations, and the locations become invalid.

Since these operations change the mask, the result afterwards will no longer share a mask, since masks have
copy-on-write semantics.

Module MA: Attributes

Constants e, pi, NewAxis from Numeric, and the constants from module Precision that define nice names for
the typecodes. 
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The special variables masked and masked_print_option are discussed in “The constant masked” on page 107. 

The module Numeric is an element of MA, so after from MA import *, you can refer to the functions in Nu-
meric such as Numeric.ones.

Module MA: Functions

Each of the operations discussed below returns an instance of class MaskedArray, having performed the
desired operation element-wise. In most cases the array arguments can be masked arrays or Numeric arrays or
something that Numeric can turn into a Numeric array, such as a list of real numbers.

In most cases, if Numeric has a function of the same name, the behavior of the one in MA is the same, except
that it “respects” the mask.

Unary functions

The result of a unary operation will be masked wherever the original operand was masked. It may also be
masked if the argument is not in the domain of the function. Functions available are: 

sqrt, log, log10, exp, conjugate, sin, cos, tan, arcsin, arccos, arctan, sinh, cosh, tanh, absolute, fabs, nega-
tive (also as operator -x), nonzero, around, floor

fabs (x) is the absolute value of x as a Float32 array. The other functions have their standard meaning.

Binary functions

Binary functions return a result that is masked wherever either of the operands were masked; it may also be
masked where the arguments are not in the domain of the function.

add (also as operator +), subtract (also as operator -), multiply (also as operator *), divide (also as operator /
), power (also as operator **), remainder, fmod, hypot, arctan2, bitwise_and, bitwise_or, bitwise_xor.

Comparison operators

To compare arrays, use the following binary functions. Each of them returns a masked array of 1’s and 0’s.

equal, not_equal, less_equal, greater_equal, less, greater

Note that as in Numeric, you can use a scalar for one argument and an array for the other. Note the special cau-
tion, “The operators and the comparison functions are not exactly equivalent” on pa ge32

Logical operators

Arrays of logical values can be manipulated with:

logical_not (unary), logical_or, logical_and, logical_xor.

alltrue (x) returns 1 if all elements of x are true. Masked elements are treated as true.

sometrue (x) returns 1 if any element of x is true. Masked elements are treated as false.

Special array operators

isarray (x), isMA (x) return true if x is a masked array.

rank (x) is the number of dimensions in x. 

shape (x) returns the shape of x, a tuple of array extents.

resize (x, new_shape) returns a new array with specified shape.

reshape (x, new_shape) returns a copy of x with the given new shape. 

ravel (x) returns x as one-dimensional.

concatenate (arrays, axis=0) concatenates the arrays along the specified axis.
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repeat (array, repeats, axis = 0) repeat elements of a repeats times along axis. repeats is a sequence of length
a.shape[axis] telling how many times to repeat each element.

identity (n) returns the identity matrix of shape n by n.

indices (dimensions, typecode = None) returns an array representing a grid of indices with row-only and col-
umn-only variation.

len (x) is defined to be the length of the first dimension of x. This definition, peculiar from the array point of
view, is required by the way Python implements slicing. Use size (x) for the total length of x.

size (x, axis = None) is the total size of x, or the length of a particular dimension axis whose index is given.
When axis is given the dimension of the result is one less than the dimension of x.

count (x, axis = None) counts the number of (non-masked) elements in the array, or in the array along a certain
axis.When axis is given the dimension of the result is one less than the dimension of x.

arange, arrayrange, diagonal, fromfunction, fromstring, ones, and zeros are the same as in Numeric, but re-
turn masked arrays.

sum, and product are called the same way as count; the difference is that the result is the sum, product, or av-
erage respectively of the unmasked element.

average (x, axis=0, weights=None, returned=0) computes the average value of the non-masked elements of x
along the selected axis. If weights is given, it must match the size and shape of x, and the value returned is:

In computing these sums, elements that correspond to those that are masked in x or weights are ignored. If re-
turned, a 2-tuple consisting of the average and the sum of the weights is returned.

allclose (x, y, fill_value = 1, rtol = 1.e-5, atol = 1.e-8) tests whether or not arrays x and y are equal subject to
the given relative and absolute tolerances. If fill_value is 1, masked values are considered equal, otherwise they
are considered different. The formula used for elements where both x and y have a valid value is:

| x - y | < atol + rtol * | y |
This means essentially that both elements are small compared to atol or their difference divided by their value
is small compared to rtol.

allequal (x, y, fill_value = 1) is similar to allclose, except that exact equality is demanded.

take (a, indices, axis=0) returns a selection of items from a. See the documentation in the Numeric manual.

transpose (a, axes=None) performs a reordering of the axes depending on the tuple of indices axes; the de-
fault is to reverse the order of the axes.

put (a, indices, values) is the opposite of take. The values of the array a at the locations specified in indi-
ces are set to the corresponding value of values. The array a must be a contiguous array. The argument in-
dices can be any integer sequence object with values suitable for indexing into the flat form of a. The argument
v must be any sequence of values that can be converted to the typecode of a.

>>> x = arange(6)
>>> put(x, [2,4], [20,40])
>>> print x
[ 0  1 20  3 40  5 ]

Note that the target array a is not required to be one-dimensional. Since it is contiguous and stored in row-major
order, the array indices can be treated as indexing a’s elements in storage order. 

The wrinkle on this for masked arrays is that if the locations being set by put are masked, the mask is cleared in
those locations.

weightsi xi⋅( )∑
weightsi∑

------------------------------------------
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choose (condition, t) has a result shaped like condition. t must be a tuple. Each element of the tuple can be an
array, a scalar, or the constant element masked (See “The constant masked” on pag e107). Each element of the
result is the corresponding element of t[i] where condition has the value i. The result is masked where condition
is masked or where the selected element is masked or the selected element of t is the constant masked. 

where (condition, x, y) returns an array that is filled (x) where condition is true, filled (y) where the condition
is false. One of x or y can be the constant element masked (See “The constant masked” on page107 ). The result
is masked where condition is masked, where the element selected from x or y is masked, or where x or y itself
is the constant masked and it is selected.

innerproduct (a, b) and dot (a, b) work as in Numeric, but missing values don’t contribute. The result is always
a masked array, possibly of length one, because of the possibility that one or more entries in it may be invalid
since all the data contributing to that entry was invalid.

outerproduct (a, b) produces a masked array such that result[i, j] = a[i] * b[j]. The result will be masked where
a[i] or b[j] is masked.

compress (condition, x, dimension=-1) compresses out only those valid values where condition is true. Masked
values in condition are considered false.

maximum (x, y = None) and minimum (x, y = None) compute the minimum and maximum valid values of x
if y is None; with two arguments, they return the element-wise larger or smaller of valid values, and mask the
result where either x or y is masked. If both arguments are scalars a scalar is returned.

sort (x, axis=-1, value = None) returns the array x sorted along the given axis, with masked values treated as if
they have a sort value of value but locations containing value are masked in the result if x had a mask to start
with. Thus if x contains value at a non-masked spot, but has other spots masked, the result may not be what you
want.

argsort (x, axis = -1, fill_value = None) is unusual in that it returns a Numeric array, equal to 
Numeric.argsort (filled (x, fill_value), axis); this is an array of indices for sorting along a given axis.

Controlling the size of the string representations

The functions get_print_limit () and set_print_limit (n=0) query and set the limit for converting arrays using
str() or repr (). If an array is printed that is larger than this, the values are not printed; rather you are informed
of the type and size of the array. If n is zero, the standard Numeric conversion functions are used.

When imported, MA sets this limit to 300, and the limit is also made to apply to standard Numeric arrays as
well.

Helper classes

This section discusses other classes defined in module MA.

MAError

Class MAError inherits from Exception, used to raise exceptions in the MA module. Other exceptions are pos-
sible, such as errors from the underlying Numeric module.

The constant masked

A constant named masked, in Module MA, serves several purposes.

1. When a indexing operation on an MaskedArray instance returns a scalar result, but the location indexed
was masked, then masked is returned. For example, given a one-dimensional array x such that
x.mask()[3] is 1, then x[3] is masked.

2. When masked is assigned to elements of an array via indexing or slicing, those elements become masked. 
So after x[3] = masked, x[3] is masked. 

3. Some other operations that may return scalar values, such as average, may return masked if given only 
invalid data.
107



4. To test whether or not a variable is this element, use the “is” or “is not” operator, not “==” or “!=”.

5. Operations involving the constant masked may result in an exception. In operations, masked behaves as 
an integer array of shape () with one masked element. For example, using + for illustration,

1. masked + masked is masked

2. masked + numeric scalar or numeric scalar + masked is masked

3. masked + array or array + masked is a masked array with all masked elements if array is of a numeric
type. The same is true if array is a Numeric array.

The constant masked_print_option

Another constant, masked_print_option, controls what happens when masked arrays and the constant masked
are printed:

1. masked_print_option.display() is a string that may be used to indicate those elements of an array that are
masked when the array is converted to a string, as happens with the print statement. 

2. masked_print_option.set_display (string) can be used to change the value; the default is ‘--’.

3. masked_print_option.enable(flag) can be used to enable (flag = 1, default) the use of the display string. 
If disabled (flag=0), the conversion to string becomes equivalent to str(self.filled()).

4. masked_print_option.enabled() returns the state of the display-enabling flag.

Example of masked behavior

>>> from MA import *
>>> x=arange(5)
>>> x[3] = masked
>>> print x
[0 ,1 ,2 ,-- ,4 ,]
>>> print repr(x)
array(data = 
 [0,1,2,0,4,],
      mask = 
 [0,0,0,1,0,],
      fill_value=[0,])

>>> print x[3]
--
>>> print x[3] + 1.0
--
>>> print masked + x
[-- ,-- ,-- ,-- ,-- ,]
>>> masked_print_option.enable(0)
>>> print x
[0,1,2,0,4,]
>>> print x + masked
[0,0,0,0,0,]
>>> print filled(x+masked, -99)
[-99,-99,-99,-99,-99,]

Class masked_unary_function

Given a unary array function f (x), masked_unary_function (f, fill = 0, domain = None) is a function which
when applied to an argument x returns f applied to the array filled (x, fill), with a mask equal to 
mask_or (getmask (x), domain (x)). 
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The argument domain therefore should be a callable object that returns true where x is not in the domain of f.
The following domains are also supplied as members of module MA:

• domain_check_interval (a, b) (x) = true where x < a or y > b.

• domain_tan (eps) (x) is true where abs (cos (x)) < eps, that is, a domain suitable for the tangent function.

• domain_greater (v) (x) is true where x <= v.

• domain_greater_equal (v) (x) is true where x < v.

Class masked_binary_function

Given a binary array function f (x, y), masked_binary_function (f, fillx=0, filly=0) defines a function whose
value at x is f (filled (x, fillx), filled (y, filly)) with a resulting mask of mask_or (getmask (x), getmask (y)).
The values fillx and filly must be chosen so that (fillx, filly) is in the domain of f. 

In addition, an instance of masked_binary_function has two methods defined upon it:

• reduce (target, axis = 0)

• accumulate (target, axis = 0)

• outer(a, b)
These methods perform reduction, accumulation, and applying the function in an outer-product-like manner, as
discussed in the section “Ufuncs have special methods” on page29.

Class domained_binary_function

This class exists to implement division-related operations. It is the same as masked_binary_function, except that
a new second argument is a domain which is used to mask operations that would otherwise cause failure, such
as dividing by zero. The functions that are created from this class are divide, remainder (mod), and fmod.

The following domains are available for use as the domain argument:

• domain_safe_divide () (x, y) is true where absolute(x)*divide_tolerance > absolute (y). As the comments in
the code say, “better ideas welcome”. The constant divide_tolerance is set to 1.e-35 in the source and can
be changed by editing its value in MA.py and reinstalling. This domain is used for the divide operator.

Examples of Using MA

Data with a given value representing missing data

Suppose we have read a one-dimensional list of elements named x. We also know that if any of the values are
1.e20, they represent missing data. We want to compute the average value of the data and the vector of devia-
tions from average.

>>> from MA import *
>>> x = array([0.,1.,2.,3.,4.])
>>> x[2] = 1.e20
>>> y = masked_values (x, 1.e20)
>>> print average(y)
2.0
>>> print y-average(y)
[ -2.00000000e+00, -1.00000000e+00,  --,  1.00000000e+00,
        2.00000000e+00,]

Filling in the missing data

Suppose now that we wish to print that same data, but with the missing values replaced by the average value.

>>> print filled (y, average(y))
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Numerical operations

We can do numerical operations without worrying about missing values, dividing by zero, square roots of neg-
ative numbers, etc.

>>> from MA import *
>>> x=array([1., -1., 3., 4., 5., 6.], mask=[0,0,0,0,1,0])
>>> y=array([1., 2., 0., 4., 5., 6.], mask=[0,0,0,0,0,1])
>>> print sqrt(x/y)
[  1.00000000e+00,  --,  --,  1.00000000e+00, --,  --,]

Note that four values in the result are invalid: one from a negative square root, one from a divide by zero, and
two more where the two arrays x and y had invalid data. Since the result was of a real type, the print command
printed str (filled (sqrt (x/y))).

Seeing the mask

There are various ways to see the mask. One is to print it directly, the other is to convert to the repr represen-
tation, and a third is get the mask itself. Use of getmask(x) is more robust than x.mask(), since it will work (re-
turning None) if x is a Numeric array or list.

>>> x=arange(10)
>>> x[3:5] = masked
>>> print x
[0 ,1 ,2 ,-- ,-- ,5 ,6 ,7 ,8 ,9 ,]
>>> print repr(x)
*** Masked array, mask present ***
Data:
[0 ,1 ,2 ,-- ,-- ,5 ,6 ,7 ,8 ,9 ,]
Mask (fill value [0,])
[0,0,0,1,1,0,0,0,0,0,]

>>> print getmask(x)
[0,0,0,1,1,0,0,0,0,0,]

Filling it your way

If we want to print the data with -1’s where the elements are masked, we use filled.

>>> print filled(z, -1)     
[ 1.,-1.,-1., 1.,-1.,-1.,]

Ignoring extreme values

Suppose we have an array d and we wish to compute the average of the values in d but ignore any data outside
the range -100. to 100. 

v = masked_outside(d, -100., 100.)
print average(v)

Averaging an entire multidimensional array

The problem with averaging over an entire array is that the average function only reduces one dimension at a
time. So to average the entire array, ravel it first.

>>> x
*** Masked array, no mask ***
Data:
[[ 0, 1, 2,]
 [ 3, 4, 5,]
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 [ 6, 7, 8,]
 [ 9,10,11,]]

>>> average(x)
*** Masked array, no mask ***
Data:
[ 4.5, 5.5, 6.5,]

>>> average(ravel(x))
5.5
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