Using Reinforcement Learning to Spider the Web Efficiently

Jason Rennie'?
jrennie@justresearch.com

fSchool of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

Consider the task of exploring the Web in
order to find pages of a particular kind or
on a particular topic. This task arises in
the construction of search engines and Web
knowledge bases. This paper argues that
the creation of efficient web spiders is best
framed and solved by reinforcement learning,
a branch of machine learning that concerns
itself with optimal sequential decision mak-
ing. One strength of reinforcement learning
is that it provides a formalism for measur-
ing the utility of actions that give benefit
only in the future. We present an algorithm
for learning a value function that maps hy-
perlinks to future discounted reward using a
naive Bayes text classifier. Experiments on
two real-world spidering tasks show a three-
fold improvement in spidering efficiency over
traditional breadth-first search, and up to
a two-fold improvement over reinforcement
learning with immediate reward only.

1 INTRODUCTION

Spiders are agents that explore the hyperlink graph of
the Web, often for the purpose of finding documents
with which to populate a search engine. As informa-
tion extraction techniques improve, spiders are also
becoming vital elements in the automated creation of
Web-based knowledge bases.

Extensive spidering is the key to obtaining high cover-
age by the major Web search engines, such as AltaVista
and HotBot. Since the goal of these general-purpose
search engines is to provide search capabilities over

Andrew Kachites McCallum®f
mccallum@justresearch.com

tJust Research
4616 Henry Street
Pittsburgh, PA 15213

the Web as a whole, they aim to find as many dis-
tinct web pages as possible. Such a goal lends itself
to strategies like breadth-first search. If, on the other
hand, the task is to find pages of a particular kind or
on a particular topic (as is the case for the increas-
ingly popular class of domain-specific search engines),
then an intelligent spider should try to avoid hyper-
links that lead to off-topic areas, and concentrate on
links that lead to documents of interest. Similarly, if
the goal is to locate documents for use in populating
a topic-specific knowledge base, much effort would be
wasted by following every hyperlink that is found.

This paper describes our research in efficient, topic-
directed web spidering. We argue that the creation of
efficient web spiders is best framed and solved by rein-
forcement learning, a branch of machine learning that
concerns itself with optimal sequential decision mak-
ing. One strength of reinforcement learning is that
it provides a formalism for measuring the utility of
actions that give no immediate benefit, but do give
benefit in the future. Reinforcement learning agents
represent this delayed benefit by learning a mapping
from each available action to a scalar value indicating
the sum of future discounted rewards expected from
executing that action. The “discount” makes later re-
wards less valuable than sooner rewards, thus encour-
aging efficiency.

In our current reinforcement learning spider, we learn a
mapping from the text in the neighborhood of a hyper-
link to the expected (discounted) number of relevant
pages that can be found as a result of following that
hyperlink. The mapping from the text to a scalar is
performed by casting regression as classification [Torgo
and Gama, 1997]. Specifically, we discretize the scalar
values into a finite number of bins, and use naive Bayes
to classify the text into a corresponding finite number
of classes; the value assigned to a particular hyperlink

is a weighted average of the values of the top-ranked
bins.

Our research in efficient spidering is part of a larger
project that has created Cora, a domain-specific search
engine that indexes computer science research papers
[McCallum et al., 1999]. We have spidered com-
puter science departments and labs, so far finding over
50,000 research papers in postscript format. Each
of these papers is converted to plain text, then run
through a specially-trained hidden Markov model to
automatically find the title, authors, abstract, refer-
ences, etc. Forward and backward references between
papers are resolved. Finally, all this information is
made available in a searchable, public web interface at
www. cora.justresearch.com.

In Cora efficient spidering is a significant concern.
The majority of the pages in many computer sci-
ence department web sites do not contain links to re-
search papers, but instead are about courses, home-
work, schedules and admissions information. Avoid-
ing whole branches and neighborhoods of departmen-
tal web graphs can significantly improve efficiency and
increase the number of research papers found given a
finite amount of crawling time.

Our work is also driven by the WebKB project [Craven
et al., 1998]. Here the focus is on automatically popu-
lating a knowledge base with information that is avail-
able on the World Wide Web. The system is given
an ontology consisting of object classes and relations
of interest (e.g. company, location, CEOQ, is-located-
in, is-officer-of), and also a training set consisting of
labeled instances of these classes and relations (e.g.
web pages labeled by class, and web page pairs labeled
by relation). The system then aims to extract auto-
matically new instances of these classes and relations
from the Web. Before the system can extract such in-
stances, it must locate the web documents containing
the appropriate information. This is where spidering
becomes important. By spidering efficiently we can
increase the size of the attainable knowledge base in
the face of ubiquitous limitations of time, computation
and network-bandwidth. In this paper we spider to lo-
cate the Web page listing the chief executive officers
of a company.

We report on experiments performed on data sets
taken from both the Cora and WebKB domains. Our
experiments show that reinforcement learning is a
highly effective framework for the spidering problem.
In both cases, reinforcement learning outperforms tra-
ditional spidering with breadth-first search by a fac-

tor of three or more. For both data sets, we find
that explicitly modeling future reward provides sig-
nificant benefit. The nature of the benefit depends
somewhat on the context. In the case of Cora, where
there are many reward-providing documents in each
spidering run, modeling future reward provides bene-
fit in the first half of the run only—before many hy-
perlinks leading to immediate reward have been dis-
covered. In our WebKB task, however, each spider-
ing run contains only a single reward document (as
in common reinforcement-learning “goals of achieve-
ment”), and thus many decisions must be made based
on future reward. As a result, our approach that ex-
plicitly models and predicts future reward can find the
desired documents more efficiently. In our WebKB ex-
periments, modeling future reward increases efficiency
by a factor of two or more.

2 REINFORCEMENT LEARNING

The term “reinforcement learning” refers to a frame-
work for learning optimal decision making from re-
wards or punishment [Kaelbling et al., 1996]. It differs
from supervised learning in that the learner is never
told the correct action for a particular state, but is
simply told how good or bad the selected action was,
expressed in the form of a scalar “reward.”

A task is defined by a set of states, s € S, a set
of actions, a € A, a state-action transition function,
T:S8xA— S, and areward function, R: Sx A — R.
At each time step, the learner (also called the agent)
selects an action, and then as a result is given a reward
and its new state. The goal of reinforcement learning
is to learn a policy, a mapping from states to actions,
m:S — A, that maximizes the sum of its reward over
time. We use the infinite-horizon discounted model
where reward over time is a geometrically discounted
sum in which the discount, 0 < v < 1, devalues re-
wards received in the future. Accordingly, when fol-
lowing policy 7, we can define the value of each state
to be:

V() = Y4t 1)
t=0

where r; is the reward received t time steps after start-
ing in state s and following policy 7. The optimal pol-
icy, written 7*, is the one that maximizes the value,
V7 (s), for all states s.

In order to learn the optimal policy, we learn its value
function, V*, and its more specific correlate, called Q.

Let Q*(s,a) be the value of selecting action a from
state s, and thereafter following the optimal policy.
This is expressed as:

Q"(s,a) = R(s,a) +yV*(T(s, a)). (2)

We can now define the optimal policy in terms of Q) by
selecting from each state the action with the highest
expected future reward: 7*(s) = argmax, Q*(s,a).
The seminal work by Bellman [1957] shows that the
optimal policy can be found straightforwardly by dy-
namic programming.

2.1 SPIDERING AS REINFORCEMENT
LEARNING

As an aid to understanding how reinforcement learning
relates to spidering, consider the common reinforce-
ment learning task of a mouse exploring a maze to
find several pieces of cheese. The agent receives im-
mediate reward for finding each piece of cheese, and
has actions for moving among the grid squares of the
maze. The state is both the position of the mouse
and the locations of the cheese pieces remaining to
be consumed (since the cheese can only be consumed
and provide reward once). Note that the agent only
receives immediate reward for finding a maze square
containing cheese, but that in order to act optimally
it must choose actions considering future rewards as
well.

In the spidering task, the on-topic documents are im-
mediate rewards, like the pieces of cheese. An action
is following a particular hyperlink. The state is the
set of on-topic documents remaining to be found, and
the set of hyperlinks that have been discovered. The
state does not include the current “position” (last page
visited) of the agent since a crawler can jump to any
known URL next. The number of available actions is
large and dynamic, in that it depends on which doc-
uments the spider has visited so far. It is as if the
mouse can leap to any square, as long as it has already
visited a bordering square. The key feature of topic-
specific spidering that makes reinforcement learning
the proper framework is that the environment presents
situations with delayed reward.

2.2 PRACTICAL APPROXIMATIONS

The problem now is how to apply reinforcement learn-
ing to spidering in such a way that it can be practically
solved. Unfortunately, the state space is huge and dif-
ficult to generalize. It encapsulates not only the on-

topic documents remaining to be found, but also the
set of hyperlinks that are available as actions. It is
not immediately apparent how one would construct a
metric to compare different states. The action space
can also be large: the number of distinct hyperlinks
within the Web that we are considering.

We need to make some simplifying assumptions in or-
der to make the problem tractable and to aid general-
ization. Note, however, that by first defining the exact
solution in terms of the optimal policy, and making our
assumptions explicit, we will better understand what
inaccuracies we have introduced, and how to select
areas of future work that will improve performance
further. We make simplifying assumptions that: (1)
disregard state and (2) capture the relevant distinc-
tions between the actions using only the words in the
“neighborhood”! of the corresponding hyperlink. By
disregarding state, we generalize across all states and
can determine a single @)-value for each action; by as-
signing a set of words to each hyperlink we can gener-
alize across different hyperlinks by comparing the text
around them.

Thus our) function becomes a mapping from a “bag-
of-words” to a scalar (discounted sum of future re-
ward). Learning to perform efficient spidering then
involves only two remaining sub-problems: (1) obtain-
ing training data consisting of bag-of-words/Q-value
pairs, and (2) learning a mapping using the training
data. These are each described in the following two
subsections.

2.3 OBTAINING TRAINING DATA AND
CALCULATING @Q-VALUES

There are several choices for how to gather training
data. Although the agent could learn from experience
on-line, we currently train the agent off-line, using col-
lections of already-found documents and hyperlinks.
For these training sets, we know the state transition
functions, T', and the reward functions, R. With this
knowledge, we can obtain bag-of-words/Q-value pairs
and use these to estimate the @-function for an unex-
plored portion of the Web.

Recall that the @-value of a hyperlink is the dis-
counted sum of rewards received by following the op-
timal policy after traversing the hyperlink in question.
When calculating Q-values for tasks with a single goal
and single reward, dynamic programming produces for

!Text that is related to the hyperlink in question, for
example, the unordered list of words in the anchor, headers,
and page title associated with the hyperlink.

each hyperlink a value equal to the reward, discounted
by its distance to the goal. This calculation can be
done directly without running full dynamic program-
ming.

When there are many rewards, however, the process is
more complicated. Rather than trying to fully repre-
sent the exponentially-sized state space and applying
dynamic programming, we again aim to calculate the
optimal sequence directly and set the Q-value to the
discounted sum of this sequence. We calculate the op-
timal sequence directly by maintaining a “fringe” of
hyperlinks available from all the pages in the sequence
so far, and greedily traversing to the reward closest
to the fringe. Initially, the fringe only contains the
hyperlink whose Q-value we are currently calculating.
Choosing among the fringe represents the fact that a
spider is not required to select a hyperlink from among
a last page visited, but can choose among any of the
hyperlinks of which it is aware (i.e. the fringe). Note
furthermore that the fringe in this calculation is based
only on the pages reachable from the initial hyperlink;
in practice at testing time, the agent will have already
explored other hyperlinks, and will be able to “jump”
to any of these.

To see why a greedy search is reasonable, consider as-
signing Q-values to two hyperlinks, A and B. A yields
areward of 1; B yields a reward of 0 and reveals a gold
mine of hyperlinks, each of which gives a reward of 1.
Imagine a spider that had only these two hyperlinks as
possible actions. If it follows B first, its sequence of re-
wards would be {0,1,1,...,1}. Otherwise the rewards
would be {1,0,1,...,1}. Since we value efficiency, A
is the better choice. In fact, unlike many RL domains
where moving towards immediate reward can take the
agent further from a gold mine, here all alternative ac-
tions are available without futher cost, and it is always
best to first follow a hyperlink that yields immediate
reward. Thus, we choose a v that mandates this pol-
icy (given a perfect Q-function predictor), v = 0.5.
This causes nearer rewards? to be more valuable and
makes greedy search an appropriate way to determine
an optimal action sequence.

2.4 MAPPING TEXT TO Q-VALUES

Given that we have calculated @-values for hyperlinks
in our training data, next we must learn a generalized
value function that maps hyperlinks to scalar values.
The mapping should be efficient, and should generalize

2Those obtainable through a shorter sequence of
actions.

to future, unseen hyperlinks.

We represent the value function using a collection of
naive Bayes text classifiers, performing the mapping by
casting this regression problem as classification [Torgo
and Gama, 1997]. We discretize the discounted sum
of future reward values of our training data into bins,
place the text in the neighborhood of the hyperlinks
into the bin corresponding to their @-values, and use
the hyperlinks’ neighborhood text as training docu-
ments for a naive Bayes text classifier. For each new
hyperlink that we find, naive Bayes yields a proba-
bilistic class membership for each bin based on the
neighborhood text for that hyperlink. The Q-value
associated with each bin is set to the average of the
Q-values associated with the training hyperlinks as-
signed to that bin. Then the value of a new hyperlink
is estimated by taking a weighted average of each bin’s
Q-value, using the probabilistic class memberships as
weights. This gives us a method for using naive Bayes
as a function approximator.

We next introduce the naive Bayes text classifier.
Approaching the task of text classification from a
Bayesian learning framework, we assume that text
data is generated by a parametric model, and use
training data to calculate maximum a posteriori esti-
mates of the model parameters. Equipped with these
estimates, we classify new test documents using Bayes’
rule to turn the generative model around and calculate
the posterior probability that each class would have
generated the test document in question. Classifica-
tion is then the simple matter of selecting the most
probable class given the document’s words.

The classifier parameterizes each class separately with
a document frequency and with word frequencies.
Each class, c¢j, has a document frequency relative to
all other classes, written P(c;). Each class is modeled
by a multinomial over words. That is, for every word,
wy, in the vocabulary, V, P(w¢|c;) indicates the fre-
quency that the classifier expects word w; to occur in
documents in class c;.

We represent a document, d;, as an unordered collec-
tion of its words. To classify a new document with
this model we make the naive Bayes assumption: the
words in the document occur independently of each
other given the class of the document, (and further-
more independently of position). Using this assump-
tion, classification becomes straightforward. We calcu-
late the probability of each class given the evidence of
the document, P(c;|d;), and select the class for which
this expression is the maximum. We write wy,, for the

kth word in document d;. We expand P(c;|d;) with an
application of Bayes’ rule, and then make use of the
word independence assumption:

P(cjldi) o< P(c;)P(dilc;)
|d;|

~ P(e) [Plwa,ley)- (3)
k=1

Learning these parameters (P(c;) and P(wy|c;)) for
classification is accomplished using a set of labeled
training documents, D. To estimate the word prob-
ability parameters, P(w;|c;), we count over all word
occurrences for class c; the frequency that w; occurs in
documents from that class. We supplement this with
Laplace ‘smoothing’ that primes each estimate with
a count of one to avoid probabilities of zero. Define
N (wy, d;) to be the count of the number of times word
wy occurs in document d;, and define P(c;|d;) € {0,1},
as given by the document’s class label. Then, the es-
timate of the probability of word w; in class c; is:

_ 1 Y N(we, di)P(ej|di) .
VI + SV S cp Nws, di)P(c;|di) "
4

The class frequency parameters are set in the same
way, where |C| indicates the number of classes:

1+ > 4,ep Plejldi)
ICl + | D

P(wilc;)

P(cj) = (5)

Empirically, when given a large number of training
documents, naive Bayes does a good job of classifying
text documents [Lewis, 1998]. More complete presen-
tations of naive Bayes for text classification are pro-
vided by Mitchell [1997] and McCallum and Nigam
[1998].

3 EXPERIMENTAL SETUP

In August 1998 we completely mapped the documents
and hyperlinks of the web sites of computer science
departments at Brown University, Cornell University,
University of Pittsburgh and University of Texas. This
comprises our Cora data set; it includes 53,012 docu-
ments and 592,216 hyperlinks. The 2,263 target pages
(for which a reward of 1 is given) are computer science
research papers. They are identified with very high
precision by a hand-coded algorithm that checks for
abstract and reference sections.

Our WebKB data set includes 6,643 web pages, the
complete web sites of 26 companies. These companies
were selected randomly from a pool of over 1000 com-
panies in a WebKB knowledge base. Here, the target
page is one that includes information about officers
and directors of the company. One such page was lo-
cated by hand for each company, thus giving us a total
of 26 target pages.

An advantage of choosing these two data sets is that
they have extremely different properties. For Cora, the
task is to find a large number of target pages in a single
spidering run, and many rewards may be found con-
nected to the same web page. Thus accurately iden-
tifying immediate rewards is very important. Each
WebKB graph, on the other hand, contains only a sin-
gle target page. In order to locate this single reward,
the spider must traverse a path of hyperlinks. Along
this path, the spider must compare the @Q-values of
many hyperlinks; thus, distinguishing future reward is
very important.

We use two different types of neighborhood text for our
regression by classification task. The first we call full-
page neighborhood text and associate with each hy-
perlink two bags-of-words with separate vocabularies:
(1) the full text of the page on which the hyperlink is
located, and (2) the anchor text of the hyperlink and
portions of the URL. The second we call related neigh-
borhood text and associate with each hyperlink four
bags-of-words with separate vocabularies: (1) headers
and title words, (2) the anchor text of the hyperlink,
(3) directories and filenames in the URL of the hyper-
link, and (4) a small set of words immediately before
and after the hyperlink. One should note that our
choices of neighborhood text were hand selected and
were not learned in any way. In ongoing work, we are
experimenting with other types of neighborhood text
to examine their their affect on spidering performance.

For each experiment that we describe, we perform a
series of runs, one for each department or company in
the data set. The spider is trained using data from all
other departments or companies and is tested on the
Web of the remaining one. For comparison, we also
present the results of two spiders that use no form of
learning. The Breadth-First spider follows hyperlinks
in the order it finds them using a FIFO action queue.
The Optimal spider has full knowledge of the spider-
ing graph and always follows the path to the nearest
reward.

The RL Immediate spider uses binary classification for
regression. Omne bin includes all hyperlinks with a

Q@-value of 1 (those hyperlinks that point directly at
target pages). The second bin includes all other hy-
perlinks. If our @-value approximator were perfect,
this spider would perform breadth-first search until
it found a hyperlink that points directly to a target
page. Note, however, that probabilistic classification
provides intermediate values for text that could be in
either class. This is a weaker form of regression for
representing future reward than a multi-binned classi-
fier; the estimated value of a future reward hyperlink
will only be high if it shares features with immediate-
reward hyperlinks.

The RL Future spider uses future reward as described in
section 2.3, and performs regression by classifying into
three or more bins—one or more for varying amounts
of future reward. We experimented with between three
and five bins. For example, our four-bin classifier maps
immediate-reward (Q = 1) hyperlinks into one bin, hy-
perlinks with 1 > @) > v into a second bin, hyperlinks
with v > @ > ~? into a third bin, and all remaining
hyperlinks (72 > Q) into a fourth bin.

The main difference between RL Immediate and RL Fu-
ture is that RL Future has one or more bins for repre-
senting future reward hyperlinks. For example, in our
three-bin RL Future spider, the second bin represents
hyperlinks that point to a web page with immediate-
reward hyperlinks. On the other hand, RL Immediate
distinguishes only immediate-reward hyperlinks from
all other hyperlinks.

4 RESULTS

Here we present the results of experiments performed
using a spider that is adequately able to parse and nav-
igate through HTML frames. Previous versions of our
spider did not have this capability and hence the re-
sults presented here may differ somewhat from results
presented in previous work.

Figure 1 (Top) shows results from our different spi-
ders on the Cora data set. Notice that at all times
during their progress, the reinforcement learning spi-
ders have found more research papers than Breadth-
first. One measure of performance is the number of
hyperlinks followed before 75% of the research papers
are found. Reinforcement learning performs signifi-
cantly more efficiently, requiring exploration of only
14% of the hyperlinks; in comparison Breadth-first re-
quires 43%. This represents a factor of three increase
in spidering efficiency.

Note also that the RL Future spider performs better

Cora Spidering - Full-Page

 —

Optimal

RL Future (3 bins) -
RL Immediate (2 bins) - R
Breadth-First

Percent Research Papers Found

ot
0O 10 20 30 40 50 60 70 80 90 100
Percent Hyperlinks Followed

Cora Spidering - Full-Page

T

Optimal
RL Future (3 bins) -
RL Immediate (2 bins) -
Breadth-First

Percent Research Papers Found

0.5 1 15 2 25 3
Percent Hyperlinks Followed

Figure 1: (Top) A comparison of spiders on the Cora
dataset using full-page neighborhood text with results
averaged over the four departments. The reinforce-
ment learning spiders retrieve three-quarters of the re-
search papers in one-third the page expansions that
Breadth-First requires. Note that RL Future performs
better than RL Immediate in the earliest stages of spi-
dering. (Bottom) A close-up near the origin of (Top).

than the RL Immediate spider in the beginning, when
future reward must be used to correctly select among
alternative branches, none of which give immediate re-
ward. RL Future locates more than 10% of the target
documents more quickly. This early period is impor-
tant because many applications of spidering require
that only a sample of all target pages are retrieved.
Figure 1 (Bottom) shows a closeup of the early part
of the run. On average RL Future takes significantly
less time than RL Immediate to find the first 28 (5%)
of the papers—efficiently avoiding an average of 350
extra page downloads that are performed by RL Im-
mediate.

In Figure 1, after the first 30% of the papers are found,
the RL Immediate spider performs somewhat better

Cora Spidering

Optimal
-7 RL Future Full-Page - 4
__~RL Immediate Full-Page -
! RL Future Related
RL Immediate Related ------
Breadth-First ------

Percent Research Papers Found

20 30 40 50 60
Percent Hyperlinks Followed

Cora Spidering
25 |
Optimal
RL Future Full-Page -
201 RL Immediate Full-Page - 1
RL Future Related
RL Immediate Related -

15 F Breadth-First ------ 1

Percent Research Papers Found

4 10
Percent Hyperlinks Followed

Figure 2: A close-up of spidering performance with re-
sults on full-page and related neighborhood text. Note
the skewed scales. (Bottom) displays results through
the locating of the first 30% of research papers. (Top)
displays results from the later stages of spidering. Spi-
ders using related neighborhood text retrieve the first
30% of research papers more quickly than the spiders
that use the full-page neighborhood text.

than the RL Future spider. This is because the sys-
tem has uncovered many links that will give immedi-
ate reward if followed, and the RL Immediate spider
recognizes them more accurately. On average, RL Im-
mediate is able to identify immediate reward links with
95% recall, while three-bin RL Future only achieves
88% recall.

A similar phenomenon is seen when comparing spider-
ing performance using different notions of neighbor-
hood text. Figure 2 (Bottom) shows that, during the
early stages of spidering, a spider using related neigh-
borhood text performs better than one using full-page
text. However, as spidering continues (Top), the roles
are reversed and the full-page spiders perform better.
As was mentioned before, the RL Immediate full-page

spider achieves 95% recall. The related version of this
spider only achieves 71% recall on classifying research
paper hyperlinks. On the other hand, the related spi-
der achieves greater overall accuracy due to a high
recall score for the classification of other hyperlinks.
These results lead us to believe that high recall in
classifying research paper hyperlinks leads to better
performance in the middle and later stages of spider-
ing. By this time, the spider has found many hyper-
links that point to research papers. Since it can better
identify these hyperlinks, it more readily follows them.
During the early stages of spidering, identifying future
reward hyperlinks is more important; since RL Future
and spiders that use related text do better at this task,
they are quickly able to find paths toward research pa-
per hyperlinks at the beginning of the spidering task.
Since applications that can benefit from efficient spi-
dering require the retrieval of only a fraction of all
on-topic documents, we venture to say that related is
a better choice of neighborhood text than full-page.
Attempting to learn an optimal, domain-specific defi-
nition of “neighborhood text” is one potential area of
future research.

While we have examined the results of spidering runs,
we have yet to explore the workings of the internal
engine, the classifier-regressor. Such analysis gives us
some insight into spidering performance and leads us
toward future interesting experiments. The overall
classification accuracy of the underlying classifier in
the RL Immediate (2 bin) classifier is generally better
than that of the RL Future (3 bin) and much better
than the classification accuracy of the RL Future (4
bin) spider; the 2-bin RL Immediate averages 85% ac-
curacy while the 3-bin and 4-bin average 77% and 59%,
respectively. While accuracy does not directly tie to
spidering performance (3-bin performs about as well
as 2-bin), it does hint toward the added complexity
in a classification problem with more bins; the bene-
fits of using more bins must outweight the increased
difficulty in order that spidering performance benefits.
Interestingly enough, if one considers the 2-bin clas-
sification task using the 3- or 4-bin RL Future spider
(mapping the 3 or 4 labels given by the RL Future
spiders into the 2 labels given by the RL Immediate
spider), one achieves increased classification accuracy.
Using the 3-bin RL Future classifier for the 2-bin task,
we achieve 92% accuracy. Using the 4-bin classifier, we
achieve 95% accuracy. This is to be compared against
the rate of 85% achieved by the 2-bin classifier. We
conjecture that this increased accuracy in the 2-bin
task may increase spidering performance.

Table 1: Spidering performance on WebKB data.

SPIDER PCT LINKS
FOLLOWED

Optimal 3%

RL Future (4 bins) 13%

RL Future (3 bins) 22%

RL Future (5 bins) 2%

RL Immediate 27%

Breadth-First 38%

We now turn to the WebKB data set, where reward is
much more sparse, and we expect future reward to be
more important. Table 1 shows the results of differ-
ent spiders on the WebKB data. As hoped, a spider
that uses distinctions among future reward achieves
the best results by far. On average, the four-bin RL
Future spider is able to locate the officer page after
traversing only 13% of the hyperlinks within the com-
pany. This is twice as efficient as RL Immediate, which
follows an average of 27% of the hyperlinks before lo-
cating the target page. In further contrast, Breadth-
First follows an average of 38% of the hyperlinks before
finding each officers page.

Note also that the four-bin classifier performs better
than the three-bin. There is a tradeoff, however, be-
tween the flexibility of the classifier-regressor and clas-
sification accuracy. Experiments with a five-bin clas-
sifier result in worse performance—roughly equivalent
to the RL Immediate spider, following an average of
27% of available hyperlinks before locating the target
page. Better features and other methods for improv-
ing classifier accuracy (such as shrinkage [McCallum
et al., 1998]) should allow the more sensitive multi-bin
classifier to work better.

In order to provide a window into successful four-bin
classification for the value function, Table 2 shows
the ten most predictive words per class (ranked by
weighted log-odds ratio) for the four-bin RL Future
spider® The column at the top (“immediate”) refers to
the class containing immediate rewards; the column at
the bottom (“other”) refers to the class representing
the least amount of reward. The parenthesized label
indicates in which part of the hyperlink neighborhood

3«aerial,” “beckman,” “burr,” and “brown” are com-

pany names in our data.

Table 2: Most predictive words for RL Future (4 bins)

Q=1
IMMEDIATE

corpinfo (url)
executive (link)
team (link)

board (link)
management (link)

board (url)
information (url)
directors (link)
beckman (url)
anrpt (url)

1<@Q<L05

TWO-STEP
aboutbb (url) corp (url)
bb (link) inc (head)

annual (url)
about (link)
nbsp (near)

annual (head)
report (head)
inside (url)

05<Q<0.25
THREE-STEP
applications (url) siteindex (url)
aerial (head) employment (url)
burr (head) position (head)
brown (head) open (head)
sales (url) administration (head)

025<Q<0
OTHER
clp (url) and (near)
elk (url) region (head)
doc (url) to (near)
elk (head) nbsp (near)
datasheet (url) sl (url)

each word was found?.

Note that predictive words in the “immediate” class
are directly relevant to a page that lists officers and
directors of a company. We can induce from the “two-
step” class that annual reports and “about” pages
commonly include hyperlinks to a listing of company
officers. The “three-step” class includes words con-
cerning employment and product releases. It is com-
mon to include a link to the annual report on such

pages.

To this point, we have described experiments that use
a classifier-regressor built by partitioning hyperlink Q-
values. The semantics of a hyperlink’s neighborhood
text does not necessarily correspond to the hyperlink’s
Q-value. Thus, it may be advantageous to build a
classifier-regressor using classes that are based on tex-
tual semantics. We could achieve such a semantically-
partitioned set of classes via statistical clustering such

44Ur]l” refers to text in the URL. “Head” indicates
header and title words. “Link” refers to anchor text.
“Near” indicates text found shortly before or after the
hyperlink.

as the methods described in [Hofmann and Puzicha,
1998]. We believe that such a modification will vastly
improve our classification accuracy and, as a result,
improve spidering performance.

5 RELATED WORK

Several other studies have also researched spidering,
but without a framework defining optimal behavior.
ARACHNID [Menczer, 1997] is a system that uses
a collection of agents for finding information on the
Web. Each agent competes for limited computational
resources, procreating and mutating proportionally to
its success in finding relevant documents. Information
gathering experiments are demonstrated on the Ency-
clopedia Britannica Propaidia tree and synthetic data.
By contrast, our spider has roots in optimal decision
theory, and searches unstructured pages from the real
Web.

Cho et al. [1998] introduce a heuristic metric, Page-
Rank, for valuing a web page based on its linkage
properties. They show that PageRank is an effective
spidering metric for locating pages with high Page-
Rank counts or back link counts. However, these met-
rics perform poorly when the task is to locate pages
that are relevant to a particular topic or query. Our
research focuses on exactly that aspect: creating a
framework to locate web documents that are related
to a particular topic.

Additionally, there are systems that use reinforcement
learning for non-spidering Web tasks. WebWatcher
[Joachims et al., 1997] is a browsing assistant that
helps a user find information by recommending which
hyperlinks to choose. It thus restricts its action space
to only hyperlinks from the current page. WebWatcher
uses a combination of supervised and reinforcement
learning to learn the value of each word on a hyper-
link. Our work is not user-centric and strives to find
a method for learning an optimal decision policy for
locating relevant documents when hyperlink selection
is unlimited.

Laser [Boyan et al., 1996] is a search engine that auto-
matically optimizes a number of parameters to achieve
improved retrieval performance. The CMU CS Web
is used as the test bed and evaluation is based on
the user’s selection of links presented by Laser. The
work finds that incorporating HTML markup into the
TFIDF weighting scheme improves retrieval perfor-
mance. Utilizing such markup may also be effective
for further improving spidering performance.

6 CONCLUSIONS

Our results provide strong evidence that reinforcement
learning is an excellent framework within which to per-
form Web spidering. Experimental results on two data
sets show a three-fold improvement in spidering effi-
ciency over traditional breadth-first search. We find
that modeling future reward is particularly important
when reward is sparse. This occurs in two important
problem classes: (1) when the spider is trying to lo-
cate one or a proportionately small number of target
pages in a large web graph (e.g. WebKB), or (2), when
the spider is in the first half of a run in which there
are many target pages (e.g. Cora). In these cases,
explicitly modeling future reward provides a two-fold
increase in efficiency.

Several areas of future work have already been men-
tioned. In particular, we are currently improving the
classifier accuracy so that RL-Future out-performs the
immediate spider even in cases with dense immediate
rewards. Additionally, we plan to investigate other
value function criteria that relax some of our current
assumptions.

Acknowledgements

We thank Kamal Nigam, Kristie Seymore and Mark
Craven for their insightful discussions and their feed-
back on earlier drafts.

References

[Bellman, 1957] R. E. Bellman. Dynamic Program-
ming. Princeton University Press, Princeton, NJ,
1957.

[Boyan et al., 1996] Justin Boyan, Dayne Freitag, and
Thorsten Joachims. A machine learning architecture
for optimizing web search engines. In AAAI work-
shop on Internet-Based Information Systems, 1996.

[Cho et al., 1998] Junhoo Cho, Hector Garcia-Molina,
and Lawrence Page. Efficient crawling through URL
ordering. In Computer Networks and ISDN Systems
(WWW?7), volume 30, 1998.

[Craven et al., 1998] Mark Craven, Dan DiPasquo,
Dayne Freitag, Andrew McCallum, Tom Mitchell,
Kamal Nigam, and Sean Slattery. Learning to ex-
tract symbolic knowledge from the world wide web.
In Proceedings of 15th National Conference on Ar-
tificial Intelligence (AAAI-98), 1998.

[Hofmann and Puzicha, 1998] Thomas Hofmann and
Jan Puzicha. Statistical models for co-occurrence
data. Technical Report ATl Memo 1625, Artificial
Intelligence Laboratory, MIT, February 1998.

[Joachims et al., 1997] T. Joachims, D. Freitag, and
T. Mitchell. Webwatcher: A tour guide for the
World Wide Web. In Proceedings of IJCAI-97,
1997.

[Kaelbling et al., 1996] Leslie Pack Kaelbling,
Michael L. Littman, and Andrew W. Moore. Rein-
forcement learning: A survey. Journal of Artificial
Intelligence Research, pages 237-285, May 1996.

[Lewis, 1998] David D. Lewis. Naive (Bayes) at forty:
The independence assumption in information re-
trieval. In ECML-98, 1998.

[McCallum and Nigam, 1998] Andrew McCallum and
Kamal Nigam. A comparison of event models for
naive Bayes text classification. In AAAI-98 Work-
shop on Learning for Text Categorization, 1998.
http://www.cs.cmu.edu/~mecallum.

[McCallum et al., 1998] Andrew McCallum, Ronald
Rosenfeld, Tom Mitchell, and Andrew Ng. Improv-
ing text clasification by shrinkage in a hierarchy of
classes. In ICML-98, pages 359-367, 1998.

[McCallum et al., 1999] Andrew McCallum, Kamal
Nigam, Jason Rennie, and Kristie Seymore. Build-
ing domain-specific search engines with machine
learning techniques. In AAAI-99 Spring Sympo-
stum on Intelligent Agents in Cyberspace, 1999.
http://www.cs.cmu.edu/~mccallum.

[Menczer, 1997] Filippo Menczer. ARACHNID:
Adaptive retrieval agents choosing heuristic neigh-
borhoods for information discovery. In ICML 97,
1997.

[Mitchell, 1997] Tom M. Mitchell. Machine Learning.
McGraw-Hill, New York, 1997.

[Torgo and Gama, 1997] Luis Torgo and Joao Gama.
Regression using classification algorithms. Intelli-
gent Data Analysis, 1(4), 1997.

